Particle Flow Algorithm Calorimetry

Andy White University of Texas at Arlington SNIC 2006, Stanford, SLAC April 4, 2006

Overview - PFA Calorimetry

- The International Linear Collider.
- The Physics motivation for PFA Calorimetry.
- Required calorimeter performance.
- Traditional calorimetry the need for Particle Flow.
- Implementation of "PFA Calorimetry", Electromagnetic and Hadronic Calorimeters.
- Particle Flow Algorithms where we stand.
- What next?

High Energy Electron-Positron Collider: 500GeV - 1 TeV

Linear Collider Physics

* A program of e^+e^- *discovery* and *precision physics* up to 1TeV

* Understanding the Electroweak sector

- Origin of mass - Higgs physics...couplings e.g. g_{tth}, g_{hhh} - > separate Zh from WW, ZZ -> jets

- EW Symmetry breaking - Supersymmetry? -

* Precision studies of the massive top quark.

* Search for New Physics: W', Z', leptoquarks,

..., extra dimensions

* Much of this physics program requires high precision measurements of jet energies and jet-jet invariant masses -> hence the need for a new approach to hadronic calorimetry.

ILC Calorimetry R&D - motivation

	Process and	Energy	Observables	Target		Detecto	Г
	Final states	(TeV)		Accuracy		Challen	g
					Π		
Higgs	$ee \rightarrow Z^0 h^0 \rightarrow \ell^+ \ell^- X$	0.35	M_{recoil} , σ_{Zh} , BR_{bb}	$\delta \sigma_{Zh} = 2.5\%, \ \delta BR_{bb} = 1\%$		г	
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow b\bar{b}/c\bar{c}/\tau\tau$	0.35	Jet flavour , jet (E, \vec{p})	$\delta M_h = 40 \text{ MeV}, \ \delta(\sigma_{Zh} \times BR) = 1\%/7\%/5$	%	v	
	$ee \rightarrow Z^{0}h^{0}, h^{0} \rightarrow WW^{*}$	0.35	M_Z, M_W, σ_{qqWW}	$\delta(\sigma_{Zh} \times BR_{WW}) = 5\%$	•	С	
	$ee \rightarrow Z^0 h^0 / h^0 \nu \nu \rho, h^0 \rightarrow \gamma \gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma})=5\%$		C	
	$ee \rightarrow Z^{0}h^{0}, h^{0}\nu\nu\rho, h \rightarrow \mu^{+}\mu^{-}$	1.0	$M_{\mu\mu}$	5σ Evidence for $m_h = 120$ GeV	1	г	
	$ee \rightarrow Z^{0}h^{0}, h^{0} \rightarrow invisible$	0.35	σ_{qqE}	5σ Evidence for BR _{invisible} =2.5%		C	
	$ee \rightarrow h^0 \nu \nu$	0.5	$\sigma_{bb\nu\nu}$, M_{bb}	$\delta(\sigma_{\nu\nu h} \times BR_{bb}) = 1\%$		C	
	$ee \rightarrow t\bar{t}h^0$	1.0	σ_{tth}	$\delta g_{tth} = 5\%$		С	
	$ee \rightarrow Z^0 h^0 h^0, h^0 h^0 \nu \nu$	0.5/1.0	$\sigma_{Zhh}, \sigma_{\nu\nu hh}, M_{hh}$	$\delta g_{hhh} = 20/10\%$		C	
SSB	$ee \rightarrow W^+W^-$	0.5		$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$		v	
	$ee \rightarrow W^+W^-\nu \overline{\nu}/Z^0Z^0\nu \overline{\nu}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5} = 3 \text{ TeV}$		C	
SUSY	$ee \rightarrow \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_e	$\delta m_{\tilde{\chi}_1^0} = 50 \text{ MeV}$	ľ	г	
	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 1)	0.5	$E_{\pi}, E_{2\pi}, E_{3\pi}$	$\delta(m_{\tilde{\tau}_{1}} - m_{\tilde{\chi}_{1}^{0}}) = 200 \text{ MeV}$		г	
	$ee \rightarrow \tilde{t}_1 \tilde{t}_1$ (Point 1)	1.0		$\delta m_{\tilde{t}_1} = 2 \text{ GeV}$			
-CDM	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 3)	0.5		$\delta m_{\tilde{\tau}_1} = 1$ GeV, $\delta m_{\tilde{\chi}_1^0} = 500$ MeV,	1	F	
	$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 2)	0.5	M_{jj} in jjE , $M_{\ell\ell}$ in $jj\ell\ell E$	$\delta \sigma_{\chi_{2\chi_{3}}} = 4\%, \ \delta(m_{\chi_{2}^{0}} - m_{\chi_{1}^{0}}) = 500 \text{ MeV}$	1	С	
	$ee \rightarrow \tilde{\chi_1^+} \tilde{\chi_1^-} / \tilde{\chi_i^0} \tilde{\chi_j^0}$ (Point 5)	0.5/1.0	ZZĘ, WWĘ	$\delta \sigma_{\tilde{\chi}\tilde{\chi}} = 10\%$, $\delta (m_{\tilde{\chi}^0_8} - m \tilde{\chi}^0_1) = 2 \text{ GeV}$	1	C	
	$ee \rightarrow H^0A^0 \rightarrow b\overline{b}b\overline{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta m_A = 1 \text{ GeV}$	1	C	
-alternative	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta m_{\bar{\tau}_1}$	1	г	
SUSY	$\chi_1^0 \rightarrow \gamma + \not E \text{ (Point 7)}$	0.5	Non-pointing γ	$\delta c \tau = 10\%$		С	
breaking	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$ (Point 8)	0.5	Soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m}=0.2-2$ GeV]	F	
Precision SM	$ee \rightarrow t\bar{t} \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	Ţ	v	-
	$ee \rightarrow f\bar{f} (f = e, \mu, \tau; b, c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M(Z_{LR}) = 7$ TeV	1	v	
New Physics	$ee \rightarrow \gamma G \text{ (ADD)}$	1.0	$\sigma(\gamma + E)$	5σ Sensitivity	1	C	
	$ee \rightarrow KK \rightarrow f\bar{f}$ (RS)	1.0				г	
Energy/Lumi	$ee \rightarrow ee_{fwd}$	0.3/1.0		$\delta m_{top} = 50 \text{ MeV}$	ľ	Г	
Meas.	$ee \rightarrow Z^0 \gamma$	0.5/1.0			A li	г	

Benchmarking the ILC Detectors M. Battaglia

Physics examples driving calorimeter design

-All of these critical physics studies involving the calorimeter demand:

Efficient jet separation and reconstruction

Excellent jet energy resolution (Goal ~30%/JE)

Excellent jet-jet mass resolution

+ jet flavor tagging

Plus... We need very good forward calorimetry for e.g. SUSY selectron studies,

and... ability to find/reconstruct photons from secondary vertices e.g. from long-lived NLSP -> γG

Importance of good jet energy resolution

Simulation of W, Z reconstructed masses in hadronic mode.

60%/√E

(from CALICE studies, H.Videau, shown at ALCPG/Cornell: M. Schumacher)

Don't underestimate the complexity!

Why not use "traditional" calorimeters?

- Equalized EM and HAD responses ("compensation")
- Optimized sampling fractions

EXAMPLES:

ZEUS - Uranium/Scintillator

Single hadrons $35\%/\sqrt{E} \oplus 1\%$ Electrons $17\%/\sqrt{E} \oplus 1\%$ Jets $50\%/\sqrt{E}$

DO – Uranium/Liquid Argon

Jets 80%/√

Single hadrons 50%/ $\sqrt{E} \oplus 4\%$

Clearly a significant improvement is needed for LC.

What is a jet? Component energy measurements in a PFA

Implementation of PFA Calorimetry

Hardware components

>> Fine granularity ECal, reasonable $\sigma(E)$, separate charged/gamma.

>> Fine HCal, good tracking, acceptable $\sigma(e)$ for neutrals.

>> Tail-Catcher - to measure the few% of energy that may "leak" through the superconducting coil (?)

ILC Detector Design Concepts

Integrated Detector Design -Calori<u>meter is *the* critical system!</u>

Digital calorimetry - counting cells

Calorimeter Technologies

Electromagnetic Calorimeter

Physics requirements emphasize segmentation/granularity (transverse AND longitudinal) over intrinsic energy resolution.

Localization of e.m. showers and e.m./hadron separation \rightarrow dense (small X₀) ECal with fine segmentation.

Moliere radius -> O(1 cm.)

Transverse segmentation \approx Moliere radius

Charged/e.m. separation -> fine transverse segmentation (first layers of ECal).

Tracking charged particles through ECal -> fine longitudinal segmentation and high MIP efficiency.

Excellent photon direction determination (e.g. GMSB)

Keep the cost (e.g. Silicon) under control!

 $f_E \simeq \frac{R_{cal}}{\sqrt{R_M^2 + (4d_{pad})^2}}$ David Strom

SLAC-Oregon-UC Davis-BNL Si-W ECal R&D for SiD

Critical parameter: minimum space between tungsten layers.

CALICE ECal

130T of tungsten
An octagonal geometry
A high level of density
(20-40 layers, 24X0 in ~170mm)

CALICE - ECAL

Ewha Univ., Sungyunkwan Univ., Kangnung NU , Yonsei Univ.

ITEP,IHEP, MSU

Prague (IP-ascr)

➡₭ Imp. Coll, UCL, Cambridge Birmingham, Manchester,RAL, RHUL

- ➢ No large area of dead zone
- > All modules are identical (Tungsten wrapped by Cfi)
- The detector slabs would be tested before assembling

GLD Calorimeter - design options under investigation.

ECal: Options under investigation HCal: mixed tiles/strips Use "some" silicon in ECal?

Possibly digital HCal?

Scintillator production

Kyongpook Univ. (Korea)

GLD Calorimeter Readout -MultiPixel Photon Counter (MPPC)

Hamamatsu

400pixel

1600pixel

Calorimeter Technologies

Hadron Calorimeter

Physics requirements emphasize segmentation/granularity (transverse AND longitudinal) over intrinsic energy resolution.

- Depth $\geq 4\lambda$ (not including ECal ~ 1 λ)
- -Assuming EFlow:
 - sufficient segmentation to allow efficient charged particle tracking.
 - for "digital" approach sufficiently fine segmentation to give linear energy vs. hits relation
 - efficient MIP detection
 - intrinsic, single (neutral) hadron energy resolution must not degrade jet energy resolution.

Mechanics and front end boards: DESY Front end ASICs: LAL

Hadron Calorimeter - CALICE/digital

(1) Gas Electron Multiplier (GEM) - based DHCAL

Details of new 30cm x 30cm foils from 3M

Hadron Calorimeter - CALICE/digital

Assembly techniques for large scale GEM layers

Goal: Test beam at Fermilab 2007/8

A possible alternative to thin GEM foils thick GEM's.

TGEM's from Weizman Inst.

Hadron Calorimeter - CALICE/digital

(2) Resistive Plate Chamber-based DHCAL

Using the new calorimetry -Particle Flow Algorithms

Assuming that the various contributions to the jet energy resolution are independent, or at least the coherence can be factored into a separate term, then in general:

 $\sigma^{2}[E(jet)] = \sigma^{2}[Hadron(charged)]$ (P_t tracker - excellent)

- + σ^2 [electromagnetic] (~15%/JE)
- + σ^2 [Hadron(neutral)] (relies on Hits vs. Energy)
- + σ²["Confusion"] (depends on PFA details!)

Preliminaries/systematic effects for DHCAL

Ron Cassell (SLAC) has looked at various active media and absorbers, e.g.

1) Gas/scintillator active media differences

More hits /particle for scintillator - advantage??

2) Particle/Anti-particle differences: n vs. n-bar?

r? ____

3) Charged vs. neutral e.g. neutron vs. proton

These effects in the basic response of digital calorimeters must be understood for effective PFA development.

Particle/Anti-particle differences: n vs. n-bar?

 $E_n = E - m_n$; $E_{nbar} = E + m_{nbar}$; $E_{Klong} = E$

RPC – active medium Stainless steel absorber

U.Malik/LCW506 -Ron Cassell/SLAC

Examples of PFA development

Simulated EMCAL, HCAL Hits (SLAC) EMCAL, HCAL HitMaps That is March & good from (ANL) Modified EMCAL, HCAL HitMaps **MST Cluster Algorithm (Iowa)** Modified EMCAL, HCAL HitMaps Nearest-Neighbor Cluster Algorithm (SLAC, NIU) Treas - Showen Manan Aleen in an (ANL) -2 Trate is Modified EMCAL, HCAL HitMaps Density-weighted Cluster Algorithm (NIU, ANL) Nguind LD Algentinn (SLAC ANL) 2 Nguine hadrons Modified EMCAL, HCAL HitMaps Post Hit/Cluster ID (leftover hits From S.Magill/Jan 2006 "Flexible PFA structure"

Tracks, Photons, Neutrals to jet algorithm

+ Topologic Approach - "PandoraPFA" (Mark Thomson/U.Cambridge)

Iowa's Algorithm

- Start with finding track-segments in Ecal and/or Hcal (real MIPs and charged secondaries)
- Remove their hits
- Find EM showers and remove their hits
 - Can use various algorithms, e.g. MST, NN, Fixed Cone, ...
- Find dense clumps and remove their hits
- Find large-scale hadronic showers with the MST
 - Cluster remaining hits plus track segments & clumps with MST
- Examine internal structure of hadronic showers
 - Try to link clumps & track segments together (likelihood selector)
 - Look for adjacent/overlapping clusters
- Helix extrapolation of tracks (from tracker) to Ecal to match track-segment and/or cluster.
- Identify and merge fragments (different from primary clusters)
- Get primary showering energies and id's

U.Malik/LCWS06

Example results (lowa)

Z-pole results

Without cheating: Cheating in fragment finding: Perfect pattern recognition: σ/E = 49%/√E σ/E = 31%/√E σ/E = 21%/√E

Other approaches to PFA components

Topologic Approach – Mark Thompson

Topologic Approach – Mark Thompson

Preliminary Results : Z →uds events

RMS of Central 90 % of Events

B-Field	$\sigma_{\rm E}/{\rm E} = \alpha \sqrt{({\rm E}/{\rm GeV})}$
2 Tesla	37.8±0.4%
4 Tesla	35.9±0.4 %
6 Tesla	37.4±0.4 %

+ only weakly depends on B

SLAC/ANL Algorithm

- 1st step Track-linked mip segments (ANL)
- 2nd step Photon Finder (SLAC, Kansas) use analy is ang isang managina ang isang isa ECAL clusters as input
- 3rd step Track-linked EM and HAD clusters (ANL, SLAC) Substance of Calegories (1995) - CALestower clusters - CAL shower clusters) reconstruction red my segments - CALestory (1995)

 - -> Analog or cligital techniques in FCAL
- 4th step Neutral Finder algorithm (SLAC, ANL)

5th step - Jet algorithm

S.Magill/Jan 2006

Average confusion contribution = 1.9 GeV <~ Neutral hadron resolution contribution of 2.2 GeV -> approaching PFA goal*

Note: Higher percentage in central region -> less overlap W/Z The opposite correlates to an effective LOSS OF LUMINOSITY!

PFA - Issues

- Can we achieve 30%/JE for events with many high energy jets?

- Can we find an algorithm to successfully handle all the large event-to-event fluctuations and minimize the mistaken energy assignments/confusion term? ...and thereby increase the fraction of events in central peak?

- Can we get agreement between test beam data and GEANT4?

- How can we best use the test beam/1m³ setup to check inputs to PFA development and predict likely performance of future detector(s)?

Hardware/software development for ILC/PFA is a fascinating challenge – stay tuned...!!

Extra Slides

The Particle Flow Approach

Particle Flow approach holds promise of required solution but still remains to be proved for the Linear Collider!

-> Use tracker to measure Pt of dominant, charged particle energy contributions in jets; photons measured in ECal.

-> Need efficient separation of different types of energy deposition throughout calorimeter system

-> Energy measurement of only the relatively small neutral hadron contribution de-emphasizes intrinsic energy resolution, but highlights need for very efficient "pattern recognition" in calorimeter.

-> Measure (or veto) energy leakage from calorimeter through coil into muon system with "tail-catcher".

Calorimeter system/overall detector design

TWO APPROACHES:

• Large inner calorimeter radius -> achieve good separation of e, γ , charged hadrons, jets,...

Matches well with having a large tracking volume with many measurements, good momentum resolution (BR^2) with moderate magnetic field, B ~2-3T

But... calorimeter and muon systems become large and potentially very expensive...

However...may allow a "traditional" approach to calorimeter technology(s)??

EXAMPLES: Large Detector, GLD,...?

Calorimeter system/overall detector design

· Compact detector - reduced inner calorimeter radius.

Use Si/W for the ECal -> excellent resolution/separation of γ /charged. Constrain the cost by limiting the size of the calorimeter (and muon) system.

This then requires a compact tracking system -> Silicon only with very precise (~10 μ m) point measurement.

Also demands a calorimeter technology offering fine granularity -> restriction of technology choice ??

To restore BR², boost B -> 5T (stored energy, forces? - looks OK in first study)

EXAMPLE: SID

Calibration is a challenge!

...but many problems solved

Is the level of calibration accuracy sufficient ?

How to get MIP calibration in the ILC calorimeter ?

18 SiPM - one LED

UV light 500 LED's simultaneous flash – highly uniform

Hadron Calorimeter - CALICE/digital

"RPC's totally understood ready to build RPCs for the 1m3 test beam section"

Goal: Test beam at Fermilab 2007

Cal Response to Charged vs Neutral (30 m Hcal)

U.Malik/LCW506