

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

Ren-Yuan Zhu

California Institute of Technology

Physics with Crystal Calorimeters

Charmonium system observed by CB through Inclusive photons

Mass Produced Crystals

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PWO(Y)	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	0.89	1.14	1.38
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.00	2.07	2.23
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.7	20.9	22.2
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.20	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm)	410	550	420	300	480	425	402	440
(at peak)			310	220		420		
Decay Time ^b (ns)	230	1250	30	630	300	30	40	60
			6	0.9		6		
Light Yield ^{b,c} (%)	100	165	3.6	36	21	0.29	83	30
			1.1	3.4		.083		
d(LY)/dT ^b (%/ ºC)	~0	0.3	-0.6	-2	-1.6	-1.9	~0	-0.1
				~0				
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV	TAPS (L*) (GEM)	L3 BELLE PANDA?	CMS ALICE PrimEx PANDA?	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. PMT QE taken out.

SNIC 2006 at SLAC, Ren-yuan Zhu, Caltech

Scintillation Light Decay Time

Recorded with an Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Measured with a Philips XP2254B PMT (multi-alkali cathode) p.e./MeV: LSO/LYSO is 6 & 230 times of BGO & PWO respectively

Fast Scintillators

Slow Scintillators

Emission weighted PMT Q.E.

Taking out QE, L.O. of LSO/LYSO is 4/220 times BGO/PWO Hamamatsu S8664-55 APD has QE 75% for LSO/LYSO

2.5 x 2.5 x 20 cm (18 X₀)

~10% FWHM resolution for ²²Na source (0.51 MeV) 1,200 p.e./MeV, 5/230 times of BGO/PWO

LSO/LYSO with APD Readout

L.O.: 1,500 p.e./MeV, 4/200 times of BGO/PWO Readout Noise: <40 keV

SNIC 2006 at SLAC, Ren-yuan Zhu, Caltech

Date	75-85	80-00	80-00	80-00	90-10	94-10	94-10	95-20
Experiment	C. Ball	L3	CLEO II	C. Barrel	KTeV	BaBar	BELLE	CMS
Accelerator	SPEAR	LEP	CESR	LEAR	FNAL	SLAC	KEK	CERN
Crystal Type	Nal(Tl)	BGO	CsI(TI)	CsI(TI)	Csl	CsI(TI)	CsI(TI)	PbWO ₄
B-Field (T)	-	0.5	1.5	1.5	-	1.5	1.0	4.0
r _{inner} (m)	0.254	0.55	1.0	0.27	-	1.0	1.25	1.29
Number of Crystals	672	11,400	7,800	1,400	3,300	6,580	8,800	76,000
Crystal Depth (X ₀)	16	22	16	16	27	16 to 17.5	16.2	25
Crystal Volume (m ³)	1	1.5	7	1	2	5.9	9.5	11
Light Output (p.e./MeV)	350	1,400	5,000	2,000	40	5,000	5,000	2
Photosensor	PMT	Si PD	Si PD	WS^a +Si PD) PMT	Si PD	Si PD	APD^a
Gain of Photosensor	Large	1	1	1	4,000	1	1	50
σ_N /Channel (MeV)	0.05	0.8	0.5	0.2	small	0.15	0.2	40
Dynamic Range	104	10 ⁵	104	104	104	104	104	10 ⁵

Future crystal calorimeters in HEP: PANDA at GSI: PWO or BGO? LSO/LYSO for a Super B Factory or ILC?

L3 BGO Resolution

SNIC 2006 at SLAC, Ren-yuan Zhu, Caltech

BaBar CsI(TI) Resolution

Energy resolution M. Kocian, SLAC, CALOR2002 <u>.</u>0.0 . 주.06 0.05 D.04 0.03 ightarrow igBhabhas ³⁻⁹ GeV, 0.02 $\chi_{c}\rightarrow J/\psi~\gamma$ radioact. Source 0.01 MonteCarlo+BG MonteCarlo 10^{2} 1D⁻¹ E^{γ}/GeV 1 $\frac{\sigma_E}{E} = \frac{\sigma_1}{\sqrt[4]{E}} \oplus \sigma_2$ $\sigma_1 = (2.30 \pm 0.03 \pm 0.3)\%$

 $\sigma_2 = (1.35 \pm 0.08 \pm 0.2)\%$

BABAR

Crystal Degradation in situ

L3 BGO degrades 6 - 7% in 7 years

BaBar CsI(TI): 1 - 3 % per year

Effects of Radiation Damage

- Induced absorption caused by color center formation:
 - reduced light attenuation length and thus light output, and maybe
 - degraded of light response uniformity (LRU).
- Induced phosphorescence:
 - increase readout noise.
- Reduced scintillation light yield:
 - reduce light output and degrade light response uniformity.

Item	CsI(TI)	Csl	BaF_2	BGO	PbWO ₄
Color Centers	Yes	Yes	Yes	Yes	Yes
Fluorescence	Yes	Yes	Yes	Yes	Yes
Scintillation	No	No	No	No	No
Recover @RT	Slow	Slow	No	Yes	Yes
Dose Rate Dependence	No	No	No	Yes	Yes
Thermall Annealing	No/Yes	No/Yes	Yes	Yes	Yes
Optical Bleaching	No/Yes	No/Yes	Yes	Yes	Yes

Radiation Induced Absorption

Measured with Hitachi U-3210 Photospectrometer

Secondary Ion Mass Spectroscopy revealed depth profile of oxygen contamination; Oxygen control improves CsI(TI) quality

SNIC 2006 at SLAC, Ren-yuan Zhu, Caltech

TEM/EDS Study on PWO Crystals

TOPCON-002B scope, 200 kV, 10 uA, 5 to10 nm black spots identified JEOL JEM-2010 scope and Link ISIS EDS localized Stoichiometry Analysis

X-ray	Good PWO
9.	
Bad PWO	Bad PWO

Atomic Fraction (%) in PbWO₄

As Grown Sample

Element	Black Spot	Peripheral	$Matrix_1$	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The Same Sample after Oxygen Compensation

Element	Point ₁	$Point_2$	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

Oxygen Vacancies Identified

SNIC 2006 at SLAC, Ren-yuan Zhu, Caltech

BGO/PWO Quality Improvement

Nucl. Instr. and Meth. A302 (1991) 69

BGO damage recovery after 2.5 krad

Nucl. Instr. and Meth. A480 (2002) 470

PWO damage at different dose rate

LYSO Transmittance Damage

LT @ 430 nm shows 6 and 3% increase under 2 rad/h, followed by 6 and 5% degradation under 9 krad/h for CPI and SG samples respectively

- Less demanding to the environment because of small temperature coefficient.
- Radiation damage is less an issue as compared to the CMS PWO ECAL.
- A better energy resolution, σ(E)/E, at low energies than L3 BGO and CMS PWO because of its high light output and low readout noise:

2.0 % /
$$\sqrt{E} \oplus 0.5$$
 % \oplus .001/E

- Because of total absorption, precision crystal calorimetry provides the best possible energy and position resolutions for electrons and photons as well as good e/γ identification and reconstruction efficiencies.
- Progress has been made in understanding crystal radiation damage and improving qualities of mass produced crystals.
- An LSO/LYSO crystal calorimeter will provide excellent energy resolution over a large dynamic range down to MeV level for future HEP and NP experiments.

Laser Monitoring for CMS ECAL

Light Response Uniformity (LRU)

Nucl. Instr. And Meth. A340 (1994) 442

Definition

GEANT Simulation

Resolution degradation is not recoverable if LRU is damaged

LAL affects LRU

Nucl. Instr. And Meth. A413 (1998) 297

Ray-Tracing simulation for CMS PWO crystals shows no change in LRU if LAL is longer than 3.5 crystal length

Light collection efficiency, fit to a linear function of distance to the small end of the crystal, was determined with two parameters: the light collection efficiency at the middle of the crystal and the uniformity.

LAL (cm)	20	40	60	80	200			
Large Area Photo Detector, covering 100% back face								
η_m (%)	9.5±.2	15.7±.4	$19.2 {\pm}.5$	21.6±.6	$26.9 \pm .7$			
δ (%)	23 ±1	-4.6±.8	-11±1	-15±1	-15±1			
ϕ 5 r	ϕ 5 mm Photo Detector, covering 3.7% back face							
η_m (%)	.38±.04	.74±.08	$1.1 \pm .1$	1.4±.2	3.0±.3			
δ (%)	23±4	-3.5 ± 4	-12±4	-16±4	-17±3			
$rac{\eta_m(\phi 5 m m)}{\eta_m(Full)}$ (%)	4.0	4.7	5.7	6.5	11			

No damage in scintillation mechanism No damage in resolution if light attenuation length > 1 m

Dose Rate Dependence

IEEE Trans. Nucl. Sci., Vol. 44 (1997) 468-476

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- D_i : color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

No Dose Rate Dependence

No/slow recovery: no/less dose rate dependence

Зh

300°C

40

22

2h ⇒200°C

100°C

24h

⊖zoo°c

 24h

Зh

 Φ Φ

Зh 2h

 \oplus 150°C

Зh 2h 2h

 $\overline{\Phi}$ $\overline{\Phi}$ $\overline{\Phi}$

60

200°C 150°C

250°C 1200°C

80

200°C 250°C

SNIC 2006 at SLAC, Ren-yuan Zhu, Caltech

CsI(TI) Damage Mechanism

Nucl. Instr. And Meth. A340 (1994) 442

Oxygen Contamination is known to cause radiation damage for other alkali halide scintillators. In BaF₂, for example, hydroxyl (OH⁻) may be introduced into crystal through a hydrolysis process, and latter decomposed to interstitial and substitutional centers by radiation through a radiolysis process: H_i⁰ + O_s⁻ or H_s⁻ + O_i⁰, where subscript i and s refer to interstitial and substitutional centers respectively.

Possible means for trace oxygen identification:

- Secondary Ionization Mass Spectroscopy (SIMS);
- Gas Fusion (LEGO); and
- Energy Dispersive x-Ray (EDX).

PWO Radiation Damage Mechanism Nucl. Instr. And Meth. A413 (1998) 297

 Crystal defects, such as Oxygen Vacancies, are known to cause radiation damage for other oxide scintillators. In BGO, for example, three common radiation induced absorption bands at 2.3, 3.0 and 3.8 eV were found in a series of 24 doped samples, indicating defect-related color centers.

Possible means for oxygen vacancy identification:

- Electron Paramagnetic Resonance (ESR) and Electron-Nuclear Double Resonance (ENDOR);
- Transmission Electron Microscopy (TEM)/Energy Dispersion Spectrometry (EDS); and
- A pragmatic way: Oxygen Compensation by Post-Growing Annealing in Oxygen Rich Atmosphere.

Mass Produced PWO Crystals

All samples: EWRIAC < 1 m⁻¹ up to 400 rad/h Rigorous QC required to qualify CMS endcap crystals

δLO/LO versus δLT/LT @ 100 rad/h Strong correlation: Slope = 4.96

δLO/LO versus δLT/LT @ 100 rad/h

Strong correlation: Slope = 3.31

δLO/LO versus δLT/LT @ 400 rad/h Strong correlation: Slope = 4.39

δLO/LO versus δLT/LT @ 400 rad/h Strong correlation: Slope = 2.81

Radiation Induced Phosphorescence

Phosphorescence peaked at 430 nm with decay time constant of 2.5 h observed

Sample	L.Y.	F	Q _{15 rad/h}	Q _{500 rad/h}	$\sigma_{_{ m 15rad/h}}$	$\sigma_{500~ m rad/h}$
ID	p.e./MeV	μ A/rad/h	p.e.	p.e.	MeV	MeV
CPI	1,480	41	6.98x10 ⁴	2.33x10 ⁶	0.18	1.03
SG	1,580	42	7.15x10 ⁴	2.38x10 ⁶	0.17	0.97

 γ -ray induced PMT anode current can be converted to the photoelectron numbers (Q) integrated in 100 ns gate. Its statistical fluctuation contributes to the readout noise (σ).