DEPFET Pixel Detectors for Particle and Astrophysics

- DEPFET Principle
- Single Pixel characteritics
- DEPFET prototypes for - XEUS
 - XEUS
 - ILC Vertex detection

mpi halbleiterlabo

MPI HLL in collaboration with the Universities of Bonn and Mannheim

Ladislav Andricek, MPI für Physik, HLL

- fully depleted sensitive volume
- internal amplification
- Charge collection in "off" state, read out on demand

Ladislav Andricek, MPI für Physik, HLL

- internal amplification
- Charge collection in "off" state, read out on demand

- fully depleted sensitive volume
- internal amplification
- Charge collection in "off" state, read out on demand

Ladislav Andricek, MPI für Physik, HLL

Source Follower vs Drain Readout

- Constant bias current I_{Bias}

- Change in channel conductivity translates into ΔV_{Source}
- Low noise due to direct voltage amplification
- Speed depends on overall source capacitance (≈µs)

Drain voltage kept constant

- Change in channel conductivity translates into $\Delta \mathbf{I}_{\text{Drain}}$
- Control of all bias parameters
- Fast(!) signal rise time limited by R_{in}, gate settling time... (≈ns)

Measurement of g_a mpi halbleiterlabo **Collected Electrons** $0 \times 10^{\circ}$ $1x10^{4}$ $2x10^4$ $3x10^4$ $4x10^4$ $5x10^4$ $6x10^4$ 400 12 0.4 ILC 350 0.3 300 Integral Non Linearity [%] Current Change [µA] XEUS 8 -0.2 250 g_@ [pA/el.] 200 0.1 150 0.0 4 · 100 - - zero precharge · -0.1 50 -0.2 0 0 20000 Ó 5000 10000 15000 25000 0 40 80 120 160 200 3000 Energy [KeV] laser precharge [el.]

- Measured g_q values meet expectations from simulations
- No dependence on precharge in observed range
- Charge handling capacity O(10⁵) electrons

- 1. postive oxide charge and positively charged oxide traps have to be compensated by a more negative gate voltage: negative shift of the threshold voltage
- 2. increased density of interface traps: higher 1/f noise and reduced mobility (g_m)

Ladislav Andricek, MPI für Physik, HLL

Clear Efficiency

+ + + mpi + halbleiterlabor

- Study mini matrix devices in laser setup
- Scan wide parameter space of Clear Gate and Clear Voltage
- Study various designs, geometries (length of clear gate) and operating conditions (static or clocked clear gate)

Complete clear achieved with static clear gate ! Required voltages are small (5-7V) – very important for future SWITCHER

Study clear efficiency for short clear pulses

Complete clear in only 10-20 ns @ ΔV_{clear} = 11-7 V

Mission concept:

- Increased focal length (35m 50 m)
- X-ray telescope consisting of two satellites
- Energy range: 0.1 40 keV
- Mirror area 2m² at 6keV and 5m² at 1keV

Core payload complement:

- 1:- Wide Field Imager: DEPFET APS
- 2:- Narrow Field Imager option 1: superconducting tunnel junctions at 250 mK option 2: micro calorimeter at 50 mK

DEPFET XEUS Prototype

- 75x75 µm² pixel
- 64x64 pixel matrix

Energy resolution: 126 eV FWHM @ Mn-Ka Line corresponding to 4.9 e⁻ ENC

• Line processing time 25 μ s

"frontside" illumination

mpi halbleiterlabo

- Illumination from backside
- Baffle: 300 µm thick silicon Minimal structure size: 150 μm
- Exposure ca. 100000 frames

> Contour plot from ADU maps

> Hitmap with 100 ADU threshold

smallest pixel cell 22.5 x 36 µm² limited by technology: smallest feature size ≈2µm

Double pixel cells: reduces the required read out speed by 2 \rightarrow doubles the number of readout channels

- -: DESY test beam with 1-6 GeV e-
- -: Bonn ATLAS telescope system: double sided strip detectors, 300µm pitch 50 µm (no intermediate strips)
 - -: bias scans (\rightarrow cluster size)
 - -: energy scans (\rightarrow resolution)
 - -: different readout modes...

5 Hybrids with different matrices under test all 450 μ m thick

Name	Wafer	Type	Pixelsize (μm)
Hyb1B	W09 O03	CCG nonHE rec small	33×23.75
Hyb1A	W11 J12	CCG HE rec small	33×23.75
Hyb2A	W11 B03	CCG HE rec small A	36×22
HybMun1		CCG nonHE rec small	33×23.75
HybGCG		GCG nonHE	36×28.5

Some results \rightarrow

mpi halbleiterlabo

- Clock 50 Mhz ... but ...
- Read all channels (no zero suppression)
- ~ 800 μ s/frame (64 rows) \rightarrow ~ 12 μ s/row
- Sample-clear-sample: ~ 240 ns
- Clear duration 20ns

- S/N ≈ 114 (for 450 µm sensor!)
- Noise about 250 300 e- ENC
 Usual suspects: system x-talk
 CURO, external I2V converter...
 - There is still room for improvement

Ladislav Andricek, MPI für Physik, HLL

..... there is so much more to be say and to present but I have to stop here.

The new generation of DEPFETs developed for

- space based X-spectroscopy and imaging
- vertexing at future collider experiments

is ready to go for the next round, i.e. the production of larger matrices in 2006

Energy resolution: best value

"Frontside" illumination: Source illuminates electronic side

Energy resolution: 126 eV FWHM @ Mn-Ka Line corresponding to 4.9 e⁻ ENC

"Backside" illumination: Source on top of entrance window

Energy resolution: 132 eV FWHM @ Mn-Ka Line corresponding to 6.6 e⁻ ENC

• WFI requirements

Device dimensions

- Device active area 10.4 x 10.4 cm²
- Monolithic sensor integrated onto a single wafer
- > Device thickness 450 μ m
- > Pixel size 100 x 100 μ m²
- > Total 1024 x 1024 pixel cells

Quantum efficiency

- > Thin homogeneous entrance window
- Fill factor = 1
- > QE @ C-Kα (282 eV) 90 %
- > QE @ Si-Kα (1740 eV) 100 %
- > QE @ Cu-Kα (8050 eV) 100 %
- > QE @ 10 keV 96 %
- > QE @ 20 keV 45 %

Spectroscopy

- > Energy resolution @ Mn-K α 125 eV
- > Energy resolution @ C-K α 50 eV
- System noise 3-5 e⁻ ENC

Readout timing

- Total readout time / frame 1 2 ms
- > Processing time per detector row 2.5 4 μ s
- > Total raw data rate 2 GByte / s

Measurement of clear efficiency

- > Drain readout setup
- Clear pulse lengths > 150 ns feasible with setup
- Clear process by diffusion & drift
- Charge injection by laser in one cycle
- Number of dark cyles follow
- Observation of dc levels at pixel output
- Sampling before and after the laser signal and after the first clear

Case of incomplete clear:

- Pixel in dynamic equilibrium
- Different dc levels after each clear
- No saturation of dc levels

Result: Pulse height spectrum

