# **Active Edge and 3D Sensors**



## **Chris Kenney**





International Symposium on Detector Development SLAC, April 5, 2006 kenney@slac.stanford.edu



## **Project Members**

- Molecular Biology Consortium C. Kenney, E. Westbrook, A. Thompson, E. Perozziello
- o Brunel University J. Hasi, A. Kok, C. da Via, S. Watts
- University of Hawaii S. Parker
- Lawrence Berkeley Laboratory D. Gnani, E. Mandelli, G. Meddeler
- o CERN M. Deile, G. Anelli
- European Synchrotron Research Facility J. Morse

## **Standard Planar**



•Many Dangling Bonds

•Effective Short Between Surfaces

## **Active Edge Concept**

Wrap Top Field Oxide Around Side



## **Active Edge Concept**

Wrap Bottom Implant Around Side



## Fabrication

Use Support Wafer

►No Sawing

Plasma Dice Instead

Dope and Grow Field Oxide on Edges

Otherwise same as Standard Planar



#### ALS X-ray microbeam signal on the I<sup>ST</sup> and 2<sup>ND</sup> channels of a Active Edge planar detector • Current

Current
 Integration
 Mode

16 Strips
150 mm Pitch
100 mm thick



•Diffusion Paths 100 mm long

- •Still 80% of Signal at Edge
- •Low Trapping Probability
- •Long Life times in Bulk

777777777744444

## **O Volts Bias**





## **Wire Bonds**

60-80
40-60
20-40



#### Sensitive up to Edge





2 µm Grid

## Benefits for Crystallography

Direct absorption in silicon: Single X-photon sensitivity (Pseudo) counting detector: dynamic range??

active edges => large area can be covered with small sensors (yield!) and with near zero insensitive border areas

Quasi-continuous readout with no deadtime (continuous spindle rotation?)

Single pixel spatial response (~100µm typical 'pixel' size)



Courtesy of MBC Phil Matsumura



## **System Geometry**



## ASIC Design

- 1. 64 x 64 pixels, each 150 µm x 150 µm.
- 2. Readout pixels are only 144  $\mu$ m x 150  $\mu$ m, keeping the readout chip fully under the sensor.
- 3. Each pixel has an integrating amplifier.
- 4. 2 rows are read out together, using 128 lines.
- 5. Integration resumes after 1 µs.
- 6. Pulse heights are digitized in a Wilkinson ADC.
- 7. Readout moves to next two rows after an additional µs.
- Data is output to the computer from alternate buffers. The full sensor is readout every 64 μs.
- 9. Charge-shared signals can be recombined in the computer.
- 10. Small replaceable units for efficiency

## **PXTAL ASIC**

8 by 64 Pixel Array, plus Full-Size 9<sup>th</sup> Test Column
128 ADCs



## **PXTAL Bumps**

- Indium Bumps Deposited at Stanford
- Indium to Indium
- o 4 mm Bump Height
- Flip-chip Bonding Done at Stanford



150002 15KV X1.00K 30um

| and the second second second |  |
|------------------------------|--|

## **Photon Counting**



- Simultaneous Fit to All 8 Peaks
- Fit to Poisson Distribution Envelope



## TOTEM

- LHC Experiment
- Roman Pots 220 m from CMS
- Close to Beam
- Active Edge is Critical for Physics





- 10 cm<sup>2</sup> Sensors
- 120 Sensors

## TOTEM SENSOR BEHAVIOR



Entries Signal/noise dist top test 4 h10 Mean 18.51 n S/N

T4-4C at 60V

NICE IV CURVE
NO EXCESS EDGE CURRENT
NORMAL LANDAU

# 3D with Active Edges

- No Guard Rings
- No Dead Area at Edges
- Allows Seamless Tiling
- Edge is an Electrode
- Efficient Wafer Use
- 200 mm pitch
- 16 Strips
- 180 **nm** thick



## **3D Active Edge**



- 1. NIMA 395 (1997) 328
- 2. IEEE Trans Nucl Sci 464 (1999) 1224
- 3. IEEE Trans Nucl Sci 482 (2001) 189
- 4. IEEE Trans Nucl Sci 485 (2001) 1629
- 5. IEEE Trans Nucl Sci 48 6 (2001) 2405
- 6. CERN Courier, Vol 43, Jan 2003, pp 23-26
- 7. NIMA 509 (2003)86-91



3D silicon detectors were proposed in 1995 by S. Parker, and active edges in 1997 by C. Kenney.

Combine traditional **VLSI** processing and **MEMS** (Micro Electro Mechanical Systems) technology.

**Electrodes** are processed inside the detector bulk instead of being implanted on the Wafer's surface.

The edge is an electrode! Dead volume at the Edge < 2 microns! Essential for -Large area coverage -Forward physics

#### AMERICIUM 14 KeV PEAK



# **3D Active Edge Scan**



## Sensitive to Within 2 mm of Edge!

Based on Full-Width at Half Maximun Drawn Strip Pitch = 200 mm Measured InterStrip Pitch = 199 +/- 2 mm



#### Measured Edge Strip Width = 200 +/- 2 mm

#### X5 test beam at CERN



• 3D

Active Edge

•180 μm Thick

16 Strips

• 100 GeV Muons

• 5 μm Telescope



# Some results from the CERN X5 beam test (100 GeV muons)



Measured hit position in 3D sensor plane #3 vs. predicted position from beam telescope.

Fitted 3D sensor width =  $3,203 \pm 4\mu m$ . Drawn width =  $3,195 \mu m$ . Sensor efficiency = 98%. System efficiency less due to DAQ, triggering electronics.

#### **3Dc** Radiation hardness tests

Volume = 1.2 x 1.33 x 0.23 mm<sup>3</sup> Inter-electrode spacing = 71 µm n-electrode readout n-type before irradiation



#### **3D TIMING**

- 0.25 micron amplifier and
- Response of sensor same as pulser
- 0.13 micron amplifier and 100 micron "diameter" hexagon/strip











- **ACTIVE EDGES for PHYSICS ACCEPTANCE**
- **3D for RADIATION DAMAGE**
- **PIXELS for MOMENTA RECONSTRUCTION**
- PIXELS for OCCUPANCY
  - 200 mm THICK
- 50 mm by 400 mm PIXELS
- **ROTATE SENSORS for X & Y**
- OFFSET PLANES s < 10 mm



|                                    | 2E  | 3E | 4E |
|------------------------------------|-----|----|----|
| Electrode<br>Area (%)              | 4   | 6  | 8  |
| Depletion<br>Distance<br>(microns) | 100 | 70 | 50 |

# **Cell Design**

- Single Sensor Yield > 50 %
- Breakdown Independent of Electrode Spacing
- Active Edges Robust against Breakdown





## ATLAS UPGRADE

- ATLAS ASIC for FP420
- SENSORS FULLY COMPATIBLE with ATLAS ELECTRONICS
- 3D IS RAD HARD ENOUGH for B-LAYER



- BUMP 3D SENSORS and ATLAS ASICs
- CERN BEAM TEST in FALL
   2006



# Tiling the Plane



## **PXTAL Movie**

- o 12 keV Photons
- Detector Stage
   Scanned

