First Results of

0.15µm CMOS SOI Pixel Detector

International Symposium on Detector Development SLAC, CA, April 5, 2006

Yasuo Arai (KEK)



## OUTLINE

- 1. Introduction What is Silicon-On-Insulator?
- 2. SOI Pixel Development at KEK
- 3. Specific Issues on SOI Pixel TCAD Simulation
- 4. Test Results
- 5. Summary



## 1. Introduction

## What is Silicon-On-Insulator?

- A thin layer (50nm  $\sim$  100 $\mu$ m) of Si layered on SiO<sub>2</sub>
- Higher speed (up to 15%) and Lower power (up to 20%) over Bulk CMOS.





OKI Electric Industry Co., Ltd.

### Feature of SOI-CMOS Devices

- Full Dielectric Isolation : Latchup Free, Small Area
- Low Junction Capacitance : *High Speed, Low Power*
- Low Leakage, Low Vth Shift : *High Temp. (~300 °C) Application*
- High Soft Error Immunity : Rad-Hard application





(Ref. 'SOI Technology' by Jean-Pierre Colinge, Springer)

#### SOI CMOS

### PD vs. FD



# IBM PowerPC, AMD Athlon, Sony Cell ...

## OKI Radio Controlled Wrist Watch (CASIO)

2006.4.5 yasuo.arai@kek.jp (SNIC06@SLAC)

#### SOI Wafer Fabrication (UNIBOND<sup>™</sup>, SOITEC)

- 🕛 Initial silicon wafers A & B
- Oxidation of wafer A to create insulating layer
- Smart Cut ion implantation induces formation of an in-depth weakened layer
- Cleaning & bonding wafer A to the handle substrate, wafer B
- Smart Cut cleavage at the mean ion penetration depth splits off wafer A
- Over the second seco
- Split-off wafer A is recycled, becoming the new wafer A or B



## 2. SOI Pixel Development at KEK

Last spring, New Detector R&D projects were called at KEK, and we proposed Development of SOI (Silicon-On-Insulator) Pixel Detector. Main members consist of Belle and ATLAS silicon detector group.



## Feature of Our SOI Pixel Detector

- Using Commercial 0.15 $\mu$ m FD-SOI process (OKI Elec. Ind.).
- SOI Wafer (SOITEC Hi-R, 150 mm \$\phi)

Top Si : Cz, ~18  $\Omega$ -cm, p-type, 50 nm thick Buried Oxide: 200 nm thick

Handle wafer: Cz, Hi-R >1k  $\Omega$ -cm (*No type assignment by supplier*), 650  $\mu$ m thick (thinned after process <350 $\mu$ m)

- Multi Project Wafer (Masks are shared with other design)
  + additional process step.
- Add only 3 mask layers to create sensor (p+, n+, and contact to substrate).
- Back side is plated with AI (200 nm).

# History

- '05. 6: OKI agreed on SOIPIX development with us.
- '05.10: 3 x 2(for p/n substrate) + 3 chips (total 9 chips) submitted.
   (32x32 small pixel, 4x4 large pixel, Short strip, Tr TEG ...)
- '05.12: Test of contact fabrication.
- '06. 2: Test of p-n junction fabrication.
- '06.3 middle : Process ends.
- '06.3.30 Bare Chip Delivered. (-> so the results are very preliminary)





#### IHXCP (Imaging Hard X-Ray Compton Polarimeter) TEG



## 3. Specific Issues on SOI Pixel

- n+, p+ implant
  - $\rightarrow$  Formed with Tr Source/Drain not to increase number of masks.
- Thinning
  - $\rightarrow$  Wafer is thinned from 650um to 350um. Further thinning is possible.
- Back Side process
  - $\rightarrow$  No implant on back side. Just add AI (2000 A) Plating.
- Thermal Donor generation
  - Type of the high-R wafer may change by TD generation during process.
  - $\rightarrow$  We prepared both p & n substrate designs.
- Back Gate Effect to SOI Tr

Substrate works as back gate, so the voltage must be low under Tr.

 $\rightarrow$  All Tr are placed within Guard Ring, and body is tied to VDD/VSS.



#### **Back Bias Simulation**

TCAD: ENEXSS



With |back bias| > 8V, NMOS or PMOS become always ON. Voltage of substrate under Tr must be kept low.





TEG Chip Layout

4 electrods/pixel Center of pixel is open for Light Test



<sup>2006.4.5</sup> yasuo.arai@kek.jp (SNIC06@SLAC)







## 5. Summary

- We have started development of Monolithic SOI Pixel Detector.
- The detector has sensor in high-resistive Si and CMOS circuit in lowresistive Si.
- We are using commercial (OKI 0.15  $\mu m$  SOI) process with commercial wafer (SOITEC Hi-R) with only adding 3 masks.
- 3-D TCAD simulations for sensor/device study are being done with ENEXSS<sub>o</sub>
- Good substrate contact and p-n junction are confirmed with the first run wafer.
- We found type of handle wafer is 'n', and have enough resistivity.
- 9 kinds of TEG chips are received at the end of March, and showing promising results. Detailed tests will be done soon.
- We would like to apply this technique to Super-B, SLHC, ILC and Xray detectors.