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CMS Pixel Tracking System

CMS contains 66 million element hybr'ld pixel based tracking system at its
center.,
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The pixels are composed of 150x100um cells fabricated on 285um thick n-
doped diffusively oxygenated float zone (dofz) silicon substrate. Each cell

IS bump-bonded to it's own preamp-readout circuit

Metal Contact via
Bump pad| Bias dot

' 150 | -

Full dose p-spray n-implant

Designed to collect e- from n+ implants:

o Electrons have high mobility pand collect more quickly than holes
e Lorentz angle is proportional to w.: 2-3 times larger than holes

o After "type-inversion” can be operated in partial depletion
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2004 CMS Beam Test Sensors

125umx125um CiS pspray test sensors:

o 22x32 cells on each chip

o 285um thick dofz substrate from Wacker

- n- doped with p=2-5 k()-cm, <111> orientation
- oxygenated at 1150°C for 24 hours

o irrc/:diaz'red with 24 GeV protons at PS to fluences: (5.9,2.0,0.47)x10*
Neg/CM

* annealed for 3 days at 30°C
- all sensors are "Standard Annealed”
* bump-bonded at 20°C, stored at -20°C
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Readout Chip

® sensors bump-bonded to 12001
PSI30 ROC from Honeywell |
- doesn't sparsify data _Jlooo- o Measurement
permits readout of small & | —Fit
signals (crucial for this é 800
work) Sl
- ?ood linearity to 30k e (at & *°|
°, mp charge depositis
~10k 6) _""g 400
- not very rad-hard 2|
200
* irradiated sensors bump- |
bonded “cold” to unirradiated | ' | |

ROCs % 10000 20000 30000 40000 50000
Input Charge (e)

supply of PSI30 now exhausted
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Simulation

Needed to interpret the charge collection profiles. Over the last several
years, we have constructed a detailed sensor simulation, Pixelav [NIM
Ab11, 88 (2003)]

------------------------------------------------------------------------------------------------------

Particle tracking: Carrier transport + e e e LT Test beam :
carrier generation signal calculation - data analysis = :
w/ delta rays > (include trapping) + data reformating package Plxelav :

N .' T """"""""""""" : AC simulation
» | Electric field map :
; from ISETCAD

(double unction | TCAD 9.0 :
. DC simulation

------------------------------------

* Electric field calculation: uses TCAD 9.0 software
— simultaneously solves Poisson and carrier continuity egs
— includes lots of semiconductor physics (including SRH)



Irradiated Data vs Simulation

Comparing mzui'g-angle char'ge collection profules of real and simulated

data at ©=59x
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Constant N.¢s and linear E-fields are ruled out!
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EVL Model

Eremin, Verbitskaya, Li create double junctions from the trapping of the
generation current,

A Per=Npfp-Nafa

n+hJ p+ n+ p+
5 /
dopedi{
>z 5
n+A l P+ n+$ E, l §p+
n(2) p(2) \\/
double peak :
> >2Z
* the trap parameters (3rd RD50 Workshop) are:
trap E(eV) | giy(em?)| Ogp(cm?) | 0 (cm?)
donor E,+0.48 6 1x10-1° 1x10-1°
acceptor | E.-0.525 3.7 1x10-15 1x10-15
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Modeling of Sensors

Sf‘ace charge in irradiated sensors can be produced by ionized traps. The
Shockley-Read-Hall (SRH) description is based on ALL trapping states:

Peff—¢€ ZNDfD — € ENA]CA = Pdopants
D A

=e [NDfD — NAfA] + Pdopants

» N and N4 are the densities of h- and e-traps

. fo
* fol

and fa are the trap occupation probabilities

low Eremin, Verbitskaya, Li (EVL): use single h/e-traps

D and A states don't have to be physical states: they represent
average quantities!

model parameters are not physical



The trap occupation probabilities are given in terms of the usual SRH

quantities:
f vhcff p+ veGE n,-eED/ kT
D:
V.02 (n+ niefr/*kT) 4+ v,67 (p + nje Eo/kT)
f veG‘;‘n -+ va’,f)n,-e_EA/ FT
A:

onlyt
e ["'eéscCa

e lresca

V.04 (n+ niefr/kT) 4+ v,60 (p + nje=Ea/kT)

Eb, Ea are defined relative to the mid-bandgap energy

o and o are hot well-known in general
rescaling oe/n=>roe/n leaves fp and f 4 invariant. They depend upon o1/ce

INg oe/h=>roe/n rescales SRH gen current I=rI.
ing n/p=r(n/p) does not leave fp and f4 invariant (fp and f4

depend on I and Ep, Ex)
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Simulate EVL model in TCAD by rescaling the trapping x-sections to get
correct leakage current:

Charge (A U]

D1=5.9x101 nes/cm

V=150 V, §=6x 10" niom? © | Vgr200 ¥ 4m6x10* nem? Vg*300 V, §=6x10™ nom? V480 V, ¢=6x10" nom?
« Dot 5 38 a Dat =3 « Dafa =3 e« Daba

< < < .
e PIXELAY @re5 8 , - PDXELAV eres g2 ——— PIXELAV &re5 $ o ¥ | PIXELAVEreS

2 - 2 '

o - -
150V] -

<200 0 200 400 €00 800 1000 1200 1400 200 O 200 400 €00 €00 1000 1200 1400
Position [pm] Position [pm]

® Model ereb is normalized to produce 30% of Ly [saturates a=
(20C)/(V®)=ao=4x10"17 A/cm @300V]

® Model ereb is normalized to produce 100% of Lybs
Neither of these can describe the datal



"Fitting" the Data

o parameters Np, N4, 0%, o, o, %, varied keeping the same Ep, E4 as
EVL

® signal trapping rates I, [ are uncertain (+10% level due to &
uncertainties and =307 level due to possible annealing) and were also
varied in the procedure

® very slow and tedious: 8-12hr TCAD run + 4x(8-16)hr Pixelav runs + test
beam analysis

* “eyeball" fitting only - ho x° or error matrix
= parameters varied by hand (no Minuit)
® strong correlations between parameters

12



Charge [A U]
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There is a contour in Np vs o. space (o< Np “°) that produces (more or
less) the same E-field in the detector:

$=6x10"* neq/cm2 d=6x10"* neq/cm2
20.0 20.0 -
100 \ 10.0 |- :
" ool \ " ol \
P o | —ajee \
= 20 \ = 20
& —dj44 & N,=0.40N;
10f N,=0.40Ny 1ok 0p,=0.250,
_ 0,=0.250, _
0.5 0.5
0 . . o 2|0 —— .3|0. NP B ;()....I...'.?Io....l....l..]...oo 0 N . o il 2I0 — .slo. NP B ;du.hu';(.)“.'““'.;bo
Donor Density (10'* cm™) Donor Density (10 ecm™)
* large z, -150V tail becomes too large for Np<35x10%
* large z, -300V signal becomes too small for N>70x10*
o ToNpoesoany I from ao/2 to ao fits data
o

['e~ VeNaoex Npoe S0 observed [ . is just OK
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Temperature Dependence

Use T-dependent recombination in TCAD and T-dependent quantities in
Pixelav (pe/m, Desn, and I'e/n):

Cnnrge |A L)
»

Charge [AL ]
Charge

nnnnnnnnn
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¥
i
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T=25¢ | /

* dj-model is predictivel
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The "Wiggle”

The charge collection profiles show a "wiggle” at low bias:

e signature of a doubly-peaked electric
field:

- e-h pairs deposited near field
minimum separate only a little
before trapping, produces local
minimum

- the apparently "unphysical” bump is
caused by collection of holes in the
higher field region near the
implant (e's drift into low field
region and trap)
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Scaling To Lower Fluences

Scale densities + trapping rates of dj44 linearly by fluence:

+ linear scaling of the trap densities doesn't work!
¥ Yoo much field on the p+ side
+ the “wiggle" is still present at ©,=2x10" n/cm?
¥ adoubly-peaked field persists at lower fluences

17



Why doesn't linear & scaling work?
+ scaling of fa/p with np is wrong (wrong Ea/p)?
+ quadratic ® scaling of VX states?

Can increase n+ side field and decrease p+ side by increasing Na/Np but
keeping I'e/n and I linear in &

Ry — %, Ry=Rr(1+8), Rp—Rr(1—09)
+ Rr=(Ra*Rp)/2, keeps I linear
+ increase Na/Np from 04 t0 0.68  *°f \
(closer to EVL value of 0.62) i&: sal
+ must scale the “full” Tieq point o | \
(range is ~ =107 in Nb) f " —dj44(6x10') » dj57a(2x10")
4+ net donor /0. also pr'efers 10 N,=0.40N,  N,=0.68N,
to increase (not very sensitive) 055_ Tm=0.250  Opn=0.200,,
+ took 3 months of tuning! | S ol

N R PP BRI IUPU PPN PPV PPN P
10 20 30 50 70 100

o Donor Density (10'* em™)



Charge [A U]

Best fit to 2.0x10™ ney/cm? is

labelled dj57a
* Na/Np=0.68

® g an/02.=0.2D, opn/0pe=1.00,

® E-field still doubly-peaked (more

than EVL prediction)
® Also compare with PMP model
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Scaling o Even Lower Fluences
Scale dj57a to increase Na/Np at ©3=0.47x10" n.,/cm?

O
Rp = 53, Ria=Rr(1+8), Rp=Rr(1-9)
i .

a Dala a Dals

— - -
> { . > 4 . > |
< - PIXELAV dj62c 2 PIXELAV dj62¢c <
] | . g% 2 L
2, 2 2
, -
: . A
l b
2 . :
2
®

200 0 200 400 600 BOO 1000 1200 1400 200 € 200 400 600 BOO 1000 1200 1400 200 0 200 400 600 BOO 1000 1200 1400
Position [um] Positionfyemy  Position [um] Position [um]

+ de)Zb NA/ND 30.75, O'Ah/O'Ae:O.25, chh/chezl.OO

¥ charge drift times now comparable to preamp shaping (simulation may
not be reliable)

+ the data "wiggle" is still present at ©3=0.47x10" n./cm?
¥ adoubly-peaked field persists at lowest fluencell
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We can still see evidence of a doubly-
peaked electric field near the "type-

inversion” fluence:
+ profiles are not described by

thermally ionized acceptors alone

+ trapped leakage current can
describe everything

Scale factor summary:
+ tfrapping rates are linear in ®

+ Na/Np increases from 0.40 at
$1=5.9x10" nee/cm? 10 0.75 at
$3=0.47x10" neg/cm?
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Space Charge Distributions

The tuned models do not have the idealized A Per=Npfp-Nafa

. P+
linear space char?e distributions predicted """
by the EVL model: doped
= carrier velocities are not uniform P —>Z
- current conservations)non-linear pers

- . 2.0-1013 - - 20000
--- Unirradiated, 75V n+Side 5_£ 9410 n em-2 P1+Side
- - 0.5x10"*n,cm ™%, 50V o -
141 2 g Viias =150V
— 25.1012 —2.0x10 neqcm , 150V o
G o 101018 | — p(2) 15000
o ~N—
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v 0 =
° ' 2
o
%” a 0 10000
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g
3 o
d & -
S —5.0-1012 3 -1.0-10 5000
o
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)
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SIS 7\ v -2.0-1013 ¢ 0
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Conclusions

* Ttis clear that a two-peak electric field is necessary to describe our
charge collection data even at low fluence

— Usual model of type inversion after irradiation is wrong:
¥ only ~1/2 of the junction inverts, p.¢f is not constant

- n+ P+ N+ p+
implant implant implant implant
125 pm 125 pm
n- bulk HV p- bulk n- bulk HV
==L sl {al =——— pspray isolation 1
—— —
- 285 pm > ~ 285 pm >

fully depleted

—""'bértly depleted §

c ot 4
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~ Usual tferminology that describes unirradiated sensors: Ve, €aep, Neft
doesn't really describe the physics of irradiated sensors:

* what does this curve really mean?

[RD4E-NIMA 465(2001) 60]

10,
r-'.a_' | : :s'u:n":‘l'l" e “ Carbonated &00
Lsgittugon 248 howrs (P52
EE 8 . 3'-_1;lu-:-|: 45 haouss :"-l /
,.") & hattugon 72 bowrs (PPSn) 5{){) E
— Standard ¢ 400 =
(a8
::‘.: z 3{)“ |
Z 4 . -
e " -~
| 4 -
4 / u Oxyeenated =00 -
2 N | = A
' :’ 'Y - = 4 “)“
(SR a I .
0L .. ﬁ’ 4"
0 1 2 3 4 5
14 -2
(1)34 GeVie proton [ 10" cm ]

* need an analytic or semi-analytic dj description to characterize
irradiated sensors
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® A two-trap double junction model can be
tuned to provide reasonable agreement

with the data

= Na/Np must vary with fluence

- describes non-trivial V, T and ®
dependence of E-field

Assume the “chemistry” of irradiated dofz
silicon is independent of initial dopant

svgges’rs that there is no advantage of
n

n over n/p at high ® (n/p is muc
cheaper to build)
O h+Side --n-bulk,300V p+Side
L — n—bulk, 150V
25000 :}\
g E \\\ 1,
S0\ D=59x10™ neg/em?
% 15000 ‘T \ Ndop:]..ZX].OlZ Cm_3 )/
= /
:g 10000.
5000 rF M ///
[....I....‘.\ﬁN%,T...I....I...
0

50 10 150 200
7 position (um)

o

Electric Field (V/cm)

Electric Field (V/cm)

30000

26000

[\
(=3
(=3
3

[y
(<]
o
3

[y
(=
o
8

5000

30000

25000

20000 |-

15000

10000

5000

n+Side --6x10*,300V
—6x10%,150V

p+Side

50 100 150 200 250
z position (um)

n+Side 6x10'* n,cm™ p+Side
- -T=-10C,300V |
— T=-10C,150V /

50 100 150 200 250
z position (um)



® Model will be important to calibrate the hit reconstruction after

irradiation in LHC

- Charge Sharing in4T CMS: dominated by Lorentz drift.
The Lorentz angle is linear in the mobility w.(E)

eryvBsin0,p

tanQ; ~ B
e

+ wW(E) varies by ~3 across the

— FH‘U(E)B Sin evB

detector thickness in irradiated

sensors

* creates very non-linear
charge sharing

* largest in middle and
smallest near implants

+ trapping also causes non-linear
response in irradiated sensors
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Plotting the fraction of charge f=QL/(Qr+QL) shared in the last and first
pixels of an azimuthal cluster vs the hit position

N=1.5 new _ n=1.5irr

Dot1_150x100: 1.2e12 n— bulk@-150V,—4T@90deg,flux=0.,eta=1.5 (mobil_1) v Dot1_150x100: 1.2e12 n— bulk@-150V,-4T@90deg,flux=0.,eta=1.5 (mobil_1)

1.0 1.0

2 pix clust

0.8 0% & 6ae 0.8
aV;
. 0.6 0.6 4
VS )
: ": — >
+ i Ty
N—" &
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4 I " ;
/ >
I / ‘&
0.2 / ® ‘ 0.2 "
- /
J . ©
\ / Pixel Wall
) ———— e —— 0.0
0 20 40 60 80 100 '
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* Before irradiation: linear sharing w/ large offset from Lorentz drift
* After irradiation: 3-pixel clusters vanish

— 2-pixel clusters have non-linear hit position dependence on f
* need model to understand and correct for this
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