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CMS contains 66 million element hybrid-pixel based tracking system at its 
center,

CMS Pixel Tracking System
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Designed to collect e- from n+ implants:

• Electrons have high mobility ! and collect more quickly than holes

• Lorentz angle is proportional to !: 2-3 times larger than holes

• After “type-inversion” can be operated in partial depletion

The pixels are composed of 150x100!m cells fabricated on 285!m thick n-
doped diffusively oxygenated float zone (dofz) silicon substrate.  Each cell 
is bump-bonded to it’s own preamp-readout circuit
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125!mx125!m CiS pspray test sensors:

• 22x32 cells on each chip

• 285!m thick dofz substrate from Wacker

- n- doped with "=2-5 k#-cm, <111> orientation

- oxygenated at 1150!C for 24 hours

• irradiated with 24 GeV protons at PS to fluences:  (5.9, 2.0, 0.47)x1014 
neq/cm2

• annealed for 3 days at 30!C

- all sensors are “Standard Annealed”

• bump-bonded at 20!C, stored at -20!C

2004 CMS Beam Test Sensors
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Readout Chip

• sensors bump-bonded to 
PSI30 ROC from Honeywell

- doesn’t sparsify data, 
permits readout of small 
signals (crucial for this 
work)

- good linearity to 30k e (at 
15!, mp charge deposit is 
~10k e)

- not very rad-hard

• irradiated sensors bump-
bonded “cold” to unirradiated 
ROCs

supply of PSI30 now exhausted!
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Needed to interpret the charge collection profiles.  Over the last several 
years, we have constructed a detailed sensor simulation, Pixelav [NIM 
A511, 88 (2003)] 

• Electric field calculation: uses TCAD 9.0 software

- simultaneously solves Poisson and carrier continuity eqs

- includes lots of semiconductor physics (including SRH)

Simulation

Particle tracking:
carrier generation
w/ delta rays

 

Electric field map
  from ISE TCAD
 (double junction 
      modeling)

Carrier transport + 
signal calculation
(include trapping)

Electronic simul.
+ data reformating

Test beam
data analysis
package Pixelav

TCAD 9.0

AC simulation

DC simulation
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Irradiated Data vs Simulation
Comparing grazing-angle charge collection profiles of real and simulated 
data at Φ1=5.9x1014 neq/cm2

• -300V data are well described by Neff=4.5x1012cm-3 p-
• width of -150V peak requires Neff=24x1012cm-3 p-

- tail not described
• Constant Neff and linear E-fields are ruled out!

-150V -300V

Read-Out Chip

depleted region

T=-10C
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Eremin, Verbitskaya, Li create double junctions from the trapping of the 
generation current,

• the trap parameters (3rd RD50 Workshop) are:

trap E (eV) gint (cm-1)  $e (cm2)  $h (cm2)

donor EV+0.48 6 1x10-15 1x10-15

acceptor EC-0.525 3.7 1x10-15 1x10-15

 

z

n+ p+

z

n+ p+

 

z

n+ p+

z

n+ p+

J
!eff=NDfD-NAfA

double peak

Ez

Je Jh

n(z) p(z)

    p-

doped

    n-

doped

EVL Model
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Modeling of Sensors
Space charge in irradiated sensors can be produced by ionized traps.  The 
Shockley-Read-Hall (SRH) description is based on ALL trapping states: 

• ND and NA are the densities of h- and e-traps

•  fD and fA are the trap occupation probabilities

• follow Eremin, Verbitskaya, Li (EVL): use single h/e-traps

-  D and A states don’t have to be physical states: they represent 
average quantities!

-model parameters are not physical

ρeff=e∑
D

ND fD− e∑
A

NA fA +ρdopants

"e [ND fD−NA fA]+ρdopants
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The trap occupation probabilities are given in terms of the usual SRH 
quantities:

• ED, EA are defined relative to the mid-bandgap energy

• $e and $h are not well-known in general

• rescaling $e/h!r$e/h leaves fD and fA invariant. They depend upon $h/$e 

only! 

• rescaling $e/h!r$e/h rescales SRH gen current  I!rI.

• rescaling n/p!r(n/p) does not leave fD and fA invariant (fD and fA 

depend on I and ED, EA)

fD=
vhσD

h p+ veσD
e nieED/kT

veσD
e (n+nieED/kT)+ vhσD

h (p+nie−ED/kT)

fA=
veσA

e n+ vhσA
hnie−EA/kT

veσA
e (n+nieEA/kT)+ vhσA

h(p+nie−EA/kT)



Simulate EVL model in TCAD by rescaling the trapping x-sections to get 
correct leakage current:

• Model ere5 is normalized to produce 30% of Iobs [saturates %=I
(20C)/(V&)=%0 =4x10-17 A/cm @300V]

• Model ere6 is normalized to produce 100% of Iobs 

Neither of these can describe the data!
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150V

450V

200V

300V

Φ1=5.9x1014 neq/cm2
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• parameters ND, NA, $A
e, $A

h, $D
e, $D

h, varied keeping the same ED, EA as 

EVL

• signal trapping rates 'e, 'h are uncertain ("10% level due to & 
uncertainties and "30% level due to possible annealing)  and were also 
varied in the procedure

• very slow and tedious: 8-12hr TCAD run + 4x(8-16)hr Pixelav runs + test 
beam analysis

• “eyeball” fitting only - no (2 or error matrix

- parameters varied by hand (no Minuit)

• strong correlations between parameters

“Fitting” the Data
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Best fit to 5.9x1014 neq/cm2:  
labelled dj44

• $h/$e=0.25, NA/ND=0.40

• scale 'e/h by 0.8 as compared with 
rate '0 expected for & 

• E-field is quite symmetric across 
sensor

150V

450V300V

200V
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• large z, -150V tail becomes too large for ND<35x1014

• large z, -300V signal becomes too small for ND>70x1014

• I#ND$e so any I from %0/2 to %0 fits data

• 'e~ veNA$e# ND$e so observed 'e is just OK 

There is a contour in ND vs $e space ($e#ND
 -2.5) that produces (more or 

less) the same E-field in the detector:
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Use T-dependent recombination in TCAD and T-dependent quantities in 
Pixelav (!e/h, De/h, and 'e/h):

• dj-model is predictive! 

T=-10C

150V 200V

200V

300V

300V

450V

450V

T=-25C

&1=6x1014 neq/cm2:

Temperature Dependence
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• signature of a doubly-peaked electric 
field:

- e-h pairs deposited near field 
minimum separate only a little 
before trapping, produces local 
minimum

- the apparently “unphysical” bump is 
caused  by collection of holes in the 
higher field region near the p+ 
implant (e’s drift into low field 
region and trap)

The “Wiggle”

E-field

The charge collection profiles show a “wiggle” at low bias:



NA(Φ2) = RA · NA(Φ1)
ND(Φ2) = RD · ND(Φ1)

Γe/h(Φ2) = RΓ · Γe/h(Φ1)




RA = RD = RΓ =
Φ2

Φ1
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! linear scaling of the trap densities doesn’t work!

" too much field on the p+ side
! the “wiggle” is still present at &2=2x1014 neq/cm2

" a doubly-peaked field persists at lower fluences

T=-10C 25V

100V 150V

50V
&2=2x1014

Scaling to Lower Fluences
Scale densities + trapping rates of dj44 linearly by fluence:



Why doesn’t linear & scaling work?
! scaling of fA/D with n,p is wrong (wrong EA/D)?
! quadratic &  scaling of V2X states?

Can increase n+ side field and decrease p+ side by increasing NA/ND but 
keeping 'e/h and I linear in &

! R'=(RA+RD)/2, keeps I linear
! increase NA/ND from 0.4 to 0.68

   (closer to EVL value of 0.62)
! must scale the “full” Ileak point

(range is ~ "10% in ND)
! net donor $h/$e also prefers 

to increase (not very sensitive)
! took 3 months of tuning!
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RΓ =
Φ2

Φ1
, RA = RΓ(1+δ), RD = RΓ(1−δ)
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Best fit to 2.0x1014 neq/cm2 is  
labelled dj57a

•NA/ND=0.68

• $Ah/$Ae=0.25, $Dh/$De=1.00, 

• E-field still doubly-peaked (more 
than EVL prediction)

•Also compare with PMP model

25V 100V 150V50V



RΓ =
Φ3

Φ2
, RA = RΓ(1+δ′), RD = RΓ(1−δ′)
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! dj62b: NA/ND =0.75, $Ah/$Ae=0.25, $Dh/$De=1.00
" charge drift times now comparable to preamp shaping (simulation may 

not be reliable)
! the data “wiggle” is still present at &3=0.47x1014 neq/cm2

" a doubly-peaked field persists at lowest fluence!!!

Scaling to Even Lower Fluences
Scale dj57a to increase NA/ND at &3=0.47x1014 neq/cm2

10V 15V 20V 25V

T=-10C
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We can still see evidence of a doubly-
peaked electric field near the “type-
inversion” fluence:

! profiles are not described by 
thermally ionized acceptors alone

! trapped leakage current can 
describe everything

Scale factor summary:
! trapping rates are linear in &
! NA/ND increases from 0.40 at 

&1=5.9x1014 neq/cm2 to 0.75 at 
&3=0.47x1014 neq/cm2



z

n+ p+!eff=NDfD-NAfA

    p-
doped

    n-
doped

n-doped

p-doped

doubly-peaked
      E field

n-doped

p-doped
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The tuned models do not have the idealized 
linear space charge distributions predicted 
by the EVL model:

- carrier velocities are not uniform

- current conservation     non-linear "eff

Space Charge Distributions
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• It is clear that a two-peak electric field is necessary to  describe our 
charge collection data even at low fluence

- Usual model of type inversion after irradiation is wrong:

" only ~1/2 of the junction inverts, "eff is not constant

Conclusions

125 !m

285 !m

-HV

z

Ez

fully depleted

partly depleted

pspray isolation

    p+ 

implant

n- bulk

    n+ 

implant

125 !m

285 !m

-HV

z

Ez

pspray isolation

    p+ 

implant

    n+ 

implant

n- bulkp- bulk
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- Usual terminology that describes unirradiated sensors: Vdep, !dep, Neff 
doesn’t really describe the physics of irradiated sensors:

" what does this curve really mean?

" need an analytic or semi-analytic dj description to characterize 
irradiated sensors
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• A two-trap double junction model can be 
tuned to provide reasonable agreement 
with the data
- NA/ND must vary with fluence
- describes non-trivial V, T and & 

dependence of E-field

• Assume the “chemistry” of irradiated dofz 
silicon is independent of initial dopant 
- suggests that there is no advantage of 

n/n over n/p at high & (n/p is much 
cheaper to build)

&=5.9x1014 neq/cm2

Ndop=1.2x1012 cm-3
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! !(E) varies by ~3 across the 
detector thickness in irradiated 
sensors
" creates very non-linear 

charge sharing
" largest in middle and 

smallest near implants 
! trapping also causes non-linear 

response in irradiated sensors

tanθL !
erHvBsinθvB

eE
= rHµ(E)BsinθvB

-    Charge Sharing in 4T CMS: dominated by Lorentz drift. 
    The Lorentz angle is linear in the mobility !(E)

• Model will be important to calibrate the hit reconstruction after 
    irradiation in LHC 
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)=1.5 new

• Before irradiation: linear sharing w/ large offset from Lorentz drift

• After irradiation: 3-pixel clusters vanish

- 2-pixel clusters have non-linear hit position dependence on f

• need model to understand and correct for this

)=1.5 irr

Plotting the fraction of charge f=QL/(QF+QL) shared in the last and first 

pixels of an azimuthal cluster vs the hit position


