International Symposium on the Development of Detectors, 2006/4 at SLAC

Time of Flight measurements with MCP-PMT

- Very high resolution TOF counter
- Lifetime of MCP-PMTs

T.Ohshima, <u>K.Inami</u>, N.Kishimoto, M.Nagamine (Nagoya university, Japan)

Introduction

Photon device for TOP counter

• Cherenkov ring imaging counter with precise time measurement (NIM A 440 (2000) 124) y

Linear-array type photon detector

For super B-factory

Single photon sensitivity Good transit time resolution (<50ps) Operational under 1.5T B-field Position sensitive (~5mm) High detection efficiency

- MCP-PMT is a good solution. In the course of R&D,
- Idea of a few psec resolution TOF

Quartz radiator

for TOP counter

≁400mm

20mm

High resolution TOF

- Structure
 - Small-size quartz (cm~mm length)
 - Cherenkov light (Decay time ~ 0) extremely reduce time dispersion compared to scintillation (τ ~ ns)
 - MCP-PMT (multi-alkali photo-cathode)
 - TTS < 50ps even for single photon gives enough time resolution for smaller number of detectable photons

MCP-PMT

- Micro-Channel-Plate
 - Tiny electron multipliers
 - Diameter ~10μm, length ~400μm
 - High gain
 - ~10⁶ for two-stage type
 - → Fast time response Pulse raise time ~500ps, TTS < 50ps
 - can operate under high magnetic field (~1T)

2006/4/3-6 SNIC at SLAC

MCP-PMT (2)

• Hamamatsu R3809U-50 (multi-alkali photo-cathode)

2006/4/3-6 SNIC at SLAC

Beam test 1

- 3GeV/c π⁻ beam
 - at KEK-PS π2 line
- PMT: R3809U-50-25X
- Quartz radiator
 - 16x16x40mm with AI evaporation
- TOF between two counters
 - evaluate the time resolution
- TOF counter with and without quartz radiator
 - To confirm MCP-PMT's behavior for passage of charged particles

Beam test 1 result

- With quartz radiator
 - Number of photons ~ 250
 - agree with expectation of simulation ~240
 - Time resolution ~ 10.6ps
- Without radiator
 - Number of photons ~ 50
 - Cherenkov light from PMT window
 - Time resolution ~ 13.6ps
- Resolution is limited by readout electronics. (σ_{elec} ~8.8ps)
 - Expected intrinsic resolution ~5.9ps

Beam test 2

Confirmation of intrinsic time resolution

Improvements

- Readout electronics
 - σ_{elec.}: 8.8ps → 4ps
 - Time-correlated Single Photon Counting Modules (SPC-134, Becker & Hickl GMbH's)
 - CFD, TAC and ADC
 - Channel width = 813fs
 - Electrical time resolution = 4ps RMS
- MCP-PMT
 - TTS: ~46ps → ~30ps
 - 10 μ m hole \rightarrow 6 μ m hole
 - R3809U-50-25X → -11X

Beam test 2 setup

- 3GeV/c π⁻ beam
 - at KEK-PS π2 line
- PMT: R3809U-50-11X
- Quartz radiator
 - 10⁺x40^zmm with AI evaporation

Beam test 2 setup photo

Beam test 2 result

- With 10mm quartz radiator
 - +3mm quartz window
 - Number of photons ~ 180
 - Time resolution = 6.2ps
 - Intrinsic resolution ~ 4.7ps
- Without quartz radiator
 - 3mm quartz window
 - Number of photons ~ 80
 - Expectation ~ 20 photo-electrons
 - Time resolution = 7.7ps

Beam test 2 result (cont'd)

• Ny, σ_{TOF} v.s. radiator thickness

- Extra photo-electrons
 - N_{p.e.} from short distance is larger than that of expected.
- Time-resolution behavior
 - Resolution is gradually worse.
 - \rightarrow Extra p.e. would affect the resolution dependence.

Lifetime

• How long can we use MCP-PMT under high hit rate?

- Light load by LED pulse (1~5kHz)
 - 20~100 p.e. /pulse (monitored by normal PMT)

Gain & TTS for single photon

TTS is stable within the gain drops.

Quantum efficiency

2006/4/3-6 SNIC at SLAC

Summary

- High resolution TOF counter
 - Small quartz as Cherenkov radiator
 - MCP-PMT (TTS ~30ps for single photon)
 - Readout system (time resolution ~4ps)
 - Time resolution of 6.2ps have been measured.
 - 4.7ps intrinsic resolution
- Lifetime test of MCP-PMTs
 - Al protection layer works well to stop feedback ions.
 - MCP-PMT by HPK with AI layer is best solution.
- For more detail, please refer NIM A 528, 763 (2004) and new paper to be published in NIM A.

Separation power

Fluctuation of Readout elec.

• 8 TDC channels with logic pulse

$$T1 = t_{stop1} - t_{start} \qquad T1 - T2 = t_{stop1} - t_{stop2}$$

$$T2 = t_{stop2} - t_{start} \qquad \rightarrow \qquad \sigma_{T1-T2} = \sqrt{\sigma_{stop1}^2 + \sigma_{stop2}^2}$$

$$T8 = t_{stop8} - t_{start} \qquad \sigma_{stop} \cong \frac{\sigma_{(T1-T2)/2}}{\sqrt{2}}$$

$$(T1 + T2) - (T3 + T4) = \frac{(t_{stop1} + t_{stop2}) - (t_{stop3} + t_{stop4})}{2}$$

$$\Rightarrow \sigma_{stop}^2 \cong \frac{\sigma_{(T1+T2-T3-T4)/2}}{\sqrt{4}}$$

$$\sigma_{module} = 8.8 \text{psec}$$

$$8.8 \text{psec}$$

$$9 \text{pse$$

Clock Generator

Discri. 2

Lifetime test (setup)

Quantum efficiency

