Cherenkov Detector with a Focussing Aerogel Radiator

I. Adachi¹, A.Yu. Barnyakov², M.Yu. Barnyakov², V.S. Bobrovnikov², A.R. Buzykaev², A.F. Danilyuk³, K. Fujita⁴, T. Fukushima⁵, A. Gorišek⁶, D. Hayashi⁴, T. Iijima⁴, M. Iwabuchi⁷, V.L. Kirillov³, S.A. Kononov², Y. Kozakai⁴, S. Korpar^{6,8}, E.A. Kravchenko², P. Križan^{5,9}, A. Kuratani⁵, Y. Mazuka⁴, T. Nakagawa¹⁰, S. Nishida¹, A.P. Onuchin², R. Pestotnik⁶, V.V. Porosev², T. Seki¹⁰, T. Sumiyoshi¹⁰, M. Tabata⁵, Y. Unno¹

> ¹ IPNS, KEK, Tsukuba, Japan
> ² Budker Institute of Nuclear Physics, Novosibirsk, Russia
> ³ Boreskov Institute of Catalysis, Novosibirsk, Russia
> ⁴ Dept. of Physics, Nagoya Univ., Nagoya, Japan
> ⁵ Dept. of Physics, Chiba Univ., Chiba, Japan
> ⁶ J.Stefan Institute, Ljubljana, Slovenia
> ⁷ Dept. of Physics, Toho Univ., Funabashi, Japan
> ⁸ Faculty of Chemistry and Chemical Engineering, Univ. of Maribor, Maribor, Slovenia
> ⁹ Faculty of Mathematics and Physics, Univ. of Ljubljana, Ljubljana, Slovenia
> ¹⁰ Dept. of Physics, Tokyo Metropolitan Univ., Tokyo, Japan

In proximity focusing RICH detectors thickness of the radiator is one of the main parameters effecting the accuracy of particle velocity measurement

With thickness increase:

- we increase the number of detected photons in the Cherenkov ring make better the accuracy of Cherenkov angle measurement
- we increase the width of Cherenkov ring
 make worse the accuracy of Cherenkov angle measurement

Possible solution – to use several radiators of Cherenkov light

The idea of the method:

Single ring,

thickness of the layers and indices of refraction are adjusted in such a way that rings from the layers superimpose

The idea is first published by Belle aerogel group in NIMA 548 (2005) 383

MONTE CARLO SIMULATION (GEANT4)

SIMULATION: FOUR RADIATORS AT NORMAL AND AT 30° BEAM INCIDENCE

Single layer	Total thickness, mm	Layer thickness, mm	index
	12	12	1.070
Single layer	24	24	1.070
		4.02	1.070
6 layers	26.0	4.19	1.004
single ring	26.9	4.57	1.054
8 8		4.78	1.050
		5.00	1.046
3 layers		10	1.070
3 rings	30	10	1.037
		10	1.070

April 5, 2006

Normal particle incidence

β resolution per track

π/K separation

Evgeniy Kravchenko, SNIC 2006

30° degree particle incidence

β resolution per track

π/K separation

Evgeniy Kravchenko, SNIC 2006

 μ/π SEPARATIONS AT NORMAL INCIDENCE

April 5, 2006

Technical requirements on multilayer aerogel, single ring (index of refraction)

Accuracy on the refractive index in the layers

- 6-layer option
- 2 cases
 - "correlated" (all layers change equally)
 - "anti-correlated" (half of the layers increase, other decrease)

Technical requirements on multilayer aerogel, single ring (layer thickness)

Accuracy on the thickness of the layers

- 2 cases
 - "correlated" (all layers change equally)
 - "anti-correlated" (half of the layers increase, other decrease)

FOCUSING FOUR-LAYERED AEROGEL TILE

Produced in May 2004

Lsc = 44 mm at 400 nm (!)

April 5, 2006

Digital X-ray measurements of aerogel density variations

- To measure variations of the refractive index we suggest new method:
- The origin of refractive index variations are density variations

$$n = \sqrt{1 + \alpha \rho}$$

123x123x25 mm aerogel block

Digital X-ray detector was used

- scanning system
- good signal/noise ratio
- 0.4 mm resolution

"The new effective detector for digital scanning radiography" NIMA513(2003)57-60 April 5, 2006 Evgeni

Raw image profile (middle of the block)

Several corrections were applied:

- background subtraction
- angle correction
- thickness correction

April 5, 2006

Beam test measurements Beam test setup

- •Gain : 2x10⁶ @1100V
- •Pixel size : 5.8mm
- •Total ch : 64ch

Photon detector Flat panel PMT : 4x4 array (Total ch : 1024ch)

April 5, 2006

Aerogel samples

•Index \rightarrow refractive index measured by laser @405nm

•d \rightarrow thickness of aerogel

•Lsc → measured scattering length @400nm

	index	d (mm)	Lsc (mm)		index	d (mm)	Lsc (mm)
4-layer	1.0473	6.0	34.9	Single	1.0532	19.5	~45
	1.0447	6.0	layer with 1.0525	layer with longitudinal variation	layer with 1.052		
	1.0421	6.0			1.0517		
	1.0416	6.9			1.0510		
				1.0513			
2-layer	1.0486	14	30.55		1.0510		
	1.0409	14			1.0509		
	·	·			1.0506		
					1.0505		

4-layer focusing

	θς	σθ	Npe	Nbg	S/N
4-layer focusing	0.2941 rad	12.9 mrad	7.4	0.5	14.9

April 5, 2006

2-layer focusing

Single layer with variation, focusing at 200 mm

	θς	σθ	Npe	Nbg	S/N
Single, L=200 mm	0.3152 rad	12.4 mrad	7.2	0.5	13.3

April 5, 2006

Single layer with variation, focusing at 600 mm

More information in the poster presentation of Yoshinobu Kozakai "Study of Proximity Focusing RICH with an Aerogel Radiator"

rad						
	θς	σθ	Npe	Nbg	S/N	
Single, L=600 mm	0.3089 rad	5.9 mrad	1.3	0.6	2.0	

Conclusions

•The development of focusing aerogel RICH is in progress:

- technical requirements on parameters of multi-layer aerogel for single ring option have been investigated
- the new method of refractive index variation characterization was suggested and tested
- several samples of multilayer aerogel were produced
- test measurements have been done with 2-layer, 4-layer samples and with sample having longitudinal variation on π -meson beam at KEK, data analysis is in progress

Additional slides:

CHERENKOV PHOTON DISTRIBUTIONS FOR SINGLE LAYER AND FOUR- LAYERED FOCUSING AEROGELS OF EQUAL THICKNESS

April 5, 2006

MOMENTUM ABERRATION ON 6-LAYERED

April 5, 2006

K/p SEPARATIONS AT NORMAL INCIDENCE

Technical requirements on multilayer aerogel, single ring (longitudinal density variations)

Accuracy on the density variations along the track

- case sensitive
 - negative variation in the layer from low values to high (continuous focusing)
 positive – variation from high values to low

