Feasibility of diffraction radiation for a non-invasive diagnostics of the SLAC electron beam.

A.Aryshev ${ }^{\text {b }}$, P.Bolton ${ }^{\mathrm{e}}$,D.Cline ${ }^{\text {d }}$, Y.Fukuid ${ }^{\text {d }}$, R.Hamatsu ${ }^{\text {a }}$, P.Karataev ${ }^{\text {b }}$, T.Muto ${ }^{\text {b }}$, G.Naumenkoc, A.Potylitsync, M.Ross ${ }^{\text {e }}$, M.Tobiyama ${ }^{\text {b }}$, J.Urakawa ${ }^{\text {b }}$, F. Zhou ${ }^{\text {d }}$ α
${ }^{a}$ Thkỳ Metropolitan University, Japan;
${ }^{\text {c }}$ Tòmsk Polytechnic University,Russia;

${ }^{b}$ KEK,Japan; ${ }^{\text {e}}{ }^{d}$ UCLAC, USA
${ }^{2}$ USA;
 size megirtemen Collaboration

Transverse beam size

measurement

$$
\mathrm{E}_{\mathrm{e}}=1 \sim 30 \mathrm{GeV}
$$

Existing advanced methods

SR - interferometer

Figure 4: Set up of SR-interferometer
SakaiaY. Yamamoto, et.al., Review of
Scientific instruments, 71,3 (2000)

Laser wire scanner

Figure 1: Scheme of a gaussian laser beam focused to its diffraction limit.
H. Sakai, et.al., Phys.Rev.ST Accel.Beams
4:022801,2001.

Transition Radiation Monitor

Figure 3: High-resolution optical transition radiation monitor tested at ATF/KEK. The monitor is displaced when the target is inserted in order to bring the beam close to the lens.
M. Ross, et.al., 2001 IEEE Particle Accelerator Conference, Chicago, IL, 2001.

Laser interferometer

Figure 2: Schema of the generation of an interference pattern using a split laser beam. d is the fringe spacing.

Figure 3: Modulation of Compton scattered photons as a function of the vertical electron beam position for different beam sizes (top large, center medium, bottom small)
H. Sakai, et.al., Phys.Rev.ST Accel.Beams 4:022801,2001.

What about a non-invasive single bunch diagnostics?

	Non invasive	Single bunch measurement
SR - interferometer	yes	no
Laser wire scanner	yes	no
Transition Radiation Monitor	no	yes
Laser interferometer	yes	no
$?$	yes	yes

Non-invasive

diagnostics based on the Optical Diffraction Radiation

Short prehistory

Start: KEK ATF 2000
Flat slit target

Measured ODR angular distribution

2003
$\frac{W_{\min }}{W_{\max }}=f\left(\sigma_{e}\right)$
Sensitivity limit was reached.

For $\mathrm{E}_{\mathrm{e}} \approx 30 \mathrm{GeV}$ the sensitivity decrease catastrophically.

P. Karataev, S. Araki et.al., PRL 93, 244802 (2004)

ODR method modification

Beam size measurement technique using ODR from crossing target was developed (G. Naumenko, KEK report, Nov. 2003)

Calculated:

Beam size

Example:

No dependence on the Lorenzfactor in far field zone

For $\lambda=0.5 \mathrm{mcm}$ and $\gamma=60000$ $\gamma \lambda=3 \mathrm{~cm} . \quad a \square \gamma \lambda$ is possible

Beam size effect is of the order of OTR intensity, which was measured using CCD from a single bunch.

Test of ODR interference from the crossed target

Angular pattern bringing together using wending bi-prism

Theory (see apenix 1) is based on the well known expression for ODR from semi-surface in system of specular reflection direction,

$$
E_{z}\left(s^{ \pm}, a, \theta_{x}, \theta_{z}\right)=\frac{i \cdot s^{ \pm} \cdot \alpha \cdot e^{-\pi a\left(\sqrt{1+\theta_{x}^{2}}+i \cdot s^{ \pm} \cdot \theta_{z}\right)}}{4 \pi^{2}\left(\sqrt{1+\theta_{x}^{2}}-i \cdot s^{ \pm} \cdot \theta_{z}\right)}
$$

where $\quad s^{+}=1, \quad s^{-}=-1$;
α is the fine structure constant, $\quad a$ is the impact-parameter
and on a phase shift on bi-prism:
$\Delta \varphi_{\text {prism }}\left(k, x^{\prime}\right)=-\frac{2 \pi}{\lambda} k \cdot\left|x^{\prime}\right|$ Where k is the wending angle

Example for KEK ATF extracted beam

$\gamma=2500, \alpha=5.6 \mathrm{mrad}, \mathrm{t} 1=0.25 \mathrm{~m}, \mathrm{t} 2=2.5 \mathrm{~m}, \lambda=0.5 \mu$ Interference pattern after the integration over the prism surface and over a Gaussian electron beam profile:

$\sigma_{\mathrm{e}}=10 \mu$

The single bunch beam sive measurement on KEK ATF using

bi-prism with a tuning wending

 angle is planed this year.
The same optical scheme may be realized also using mirrors

This scheme is more simple for understanding but it is more complicate for manufacture of a tuning system.

Some features for SLAC FFTB

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{e}}=28.5 \mathrm{GeV}, \\
& \gamma=57000 ;
\end{aligned}
$$

$\sigma_{\mathrm{e}} \approx 5 \mu ;$
Beam divergence:
horizontal $\approx 5 / \gamma$ vertical $\approx 1 / \gamma$

Bunch population: $1-3 \times 10^{10}$

1. Near field zone effect

V.A. Verzilov, Phys. Let. A 273 (2000) 135-140

$\frac{R}{\gamma^{2} \lambda}<1$

Effect is peculiar to radiation angular distribution. It shows itself for ODR as well as for OTR.

Deformation of OTR angular distribution

Near field zone effect resolution

2. Electron beam divergence influence

ODR divergence

Condition for ODR angular distribution application:

Electron beam
 divergence:

KEK ATF
horizontal
$\approx 0.05 / \gamma$
$\approx 5 / \gamma$
vertical
$\approx 0.007 / \gamma$
$\approx 1 / \gamma$

Interference pattern destruction by beam divergence

Solution of beam divergence problem

Near field model for bent target

where:

$$
W_{\perp}=\left|\int_{x^{\prime}} \int_{z^{\prime}} \tilde{e}_{\perp} d z^{\prime} d x^{\prime}\right|^{2}
$$

Target surface profile:

DR angular distribution for a Gaussian transverse beam profile

$$
W_{\perp}\left(\theta_{z}, \sigma_{e}^{\prime}\right)=\frac{1}{\sqrt{2 \pi \sigma_{e}^{\prime 2}}} \int W_{\perp}\left(\theta_{z}, x_{e}^{\prime}\right) e^{-\frac{x_{e}^{\prime 2}}{2 \pi \sigma_{e}^{\prime 2}} d x_{e}^{\prime}}
$$

Example for
$\lambda=0.5 \mu, \gamma=60000$ $\rho=0.01 \cdot \gamma^{2} \lambda \approx 18 \mathrm{~m}$ $\alpha=10 \mathrm{mrad}$

Beam size $\sigma_{\mathrm{e}} \approx(15 / \sqrt{ } 2) \cdot \lambda \approx 11 \cdot \lambda=5.5 \mu$ may be measured

However, for low

emittance beams ($\sigma_{\theta}^{e^{-}} \ll \frac{1}{\gamma}$)
we need not a bent targét.

Conclusion

- Beam size ODR effect of this method is of the first order in contrast to the effect of the second order for the method based on a flat slit target. A radiation intensity beam size effect comprises 20~60\% of OTR intensity. Single bunch measurement using CCD is possible near well as OTR measurement.
- Interference pattern from a crossed slit target were observed.
-The near field effect problem may be resolved using optical system.
-The single bunch beam size measurement on KEK ATF using bi-prism with a tuning wending angle is planed this year.
Thandrou

Apendix 1

Angular pattern bringing together

Crossing target beam size measurement technique was developed for an interference of the angular distribution patterns from the both target planes (see KEK report at Nov. 2003)

Using a cylindrical optical lens in this plane the patterns \mathbf{e}^{-} may be bringing together only if the radiation spot on the target is focused on the detector plane.
We obtain the image of the spot from the target
 In this case the phase difference $\Delta \varphi$ in the observation direction does not depend on the electron position.

So the minimum and maximum intensity position in the spot image does not depend on an electron distribution in the beam.

How to bring together the angular distribution patterns?

Wending prism application for bringing together the angular distribution patterns (Fast introduction)

Wending prism provides the undistorted radiation turning.
Radiation beams A and B are symmetric and they differ only by the phase $\Delta \varphi=(2 \pi / \lambda) \cdot \Delta y$, which depends on the electron position.

If $\Delta \mathbf{y} \ll \Delta \mathbf{Y}$, the interference picture depends only on the phase difference, that is, only on the electron position.

For example $\Delta \varphi=2 \pi \cdot n$ results an intensity minimum and $\Delta \varphi=\pi+2 \pi \cdot n$ results a maximum in the point $\mathbf{Y}=0$ for the perpendicular electromagnetic field component.

That is, a beam size may be measured

What is difference between an optical scheme with a lens and one with a prism?

Lens

If we bring together radiation beams from both target planes using an optical lens, we obtain on a CCD the image of radiation spot on the target.

As the transversal size of an electron field is much larger, than the distance between the target semiplanes, the interference picture depends on a target position, but not depends on the electron position.

Prism

Here we don't focus a radiation. We have to deal with an angular distribution like in the experiment with the flat slit target.

We use effect like one from a bad manufactured flat slit target, where the interference picture depends on the longitude distance between semi-planes:

However for a crossing target the phase shift $\Delta \varphi$ depends on an electron position

Detail analysis

We start from the well known expression for ODR from semi-surface in system of specular reflection direction.

$$
E_{z}\left(s^{ \pm}, a, \theta_{x}, \theta_{z}\right)=\frac{i \cdot s^{ \pm} \cdot \alpha \cdot e^{-\pi a\left(\sqrt{1+\theta_{x}^{2}}+i \cdot s^{ \pm} \cdot \theta_{z}\right)}}{4 \pi^{2}\left(\sqrt{1+\theta_{x}^{2}}-i \cdot s^{ \pm} \cdot \theta_{z}\right)}
$$

where $\quad s^{+}=1, \quad s^{-}=-1$; for left and right semi-surfaces
α is the fine structure constant, $\quad a$ is the impact-parameter

Phase shift on a bi-prism:
$\left.\Delta \varphi_{\text {prism }}\left(k, x^{\prime}\right)=-\left.\frac{2 \pi}{\lambda} k \cdot\right|_{\prime^{\prime}} \right\rvert\, \quad$ Where k is the wending angle

Radiation field from semi-surface of crossed target just downstream to the bi-prism:
$E_{z}^{\prime}\left(s^{ \pm}, a, \frac{x_{e}}{\gamma \lambda}, \alpha \gamma, \frac{t_{1}}{\gamma^{2} \lambda}\right)=E_{z}\left(s^{ \pm}, a, \theta_{x}^{\prime}-2 \cdot s^{ \pm} \alpha \gamma, \theta_{z}^{\prime}\right) \cdot e^{i \cdot 4 \pi \cdot s^{ \pm} \cdot \frac{y_{e}}{\lambda} \alpha} \cdot e^{i \cdot \varphi^{\prime}}$
where

$$
\begin{aligned}
& e \quad \theta_{x}^{\prime}=\frac{x^{\prime}}{t_{1}} \gamma, \quad \theta_{2}^{\prime}=\frac{z^{\prime}}{t_{1}} \gamma, \\
& \varphi^{\prime}=\frac{2 \pi}{\lambda} 2 \alpha \cdot\left|x^{\prime}\right|+\Delta \varphi_{\text {prism }}\left(k, x^{\prime}\right) ;
\end{aligned}
$$

Y_{e} is the electron position
and a final radiation intensity from the crossed target:
$W\left(a, \frac{X_{e}}{\gamma \lambda}, \alpha \gamma, \frac{t_{1}}{\gamma^{2} \lambda}, \frac{t_{2}}{\gamma^{2} \lambda}\right)=\left|\iint\left(E_{z}^{\prime}\left(1, a, \frac{X_{e}}{\gamma \lambda}, \alpha \gamma, \frac{t_{1}}{\gamma^{2} \lambda}\right)+E_{z}^{\prime}\left(-1, a, \frac{X_{e}}{\gamma \lambda}, \alpha \gamma, \frac{t_{1}}{\gamma^{2} \lambda}\right)\right) \cdot e^{i, \varphi_{n}} d z^{\prime} d x^{\prime}\right|^{2}$
where $\quad \varphi^{\prime \prime}=\frac{\pi}{\lambda} \cdot t_{2} \cdot\left(\left(\frac{x^{\prime \prime}-x^{\prime}}{t_{2}}\right)^{2}+\left(\frac{z^{\prime \prime}-z^{\prime}}{t_{2}}\right)^{2}\right)$

Angular distribution image perpendicular to the target slit.

$$
\alpha=0.003, \lambda=0.5 \mathrm{mcm}, \quad x=0 .
$$

An electron moves through the target semi-plane cross point.

An electron moves at the distance 4 mcm from the target semi-plane cross point

The foregoing allows to use this optical scheme for beam size measurement by the comparison of radiation intensity in minimum and maximum of distribution.

Apendix 2

Near field model for bent target

Near field model for bent target

$\left\{\begin{array}{l}\tilde{e}_{\leftrightarrow} \\ \tilde{\boldsymbol{e}}_{\perp}\end{array}\right\}=\frac{\sqrt{\alpha}}{\pi \sqrt{y^{2}+z^{2}}} K_{1}\left(\frac{2 \pi}{\gamma \lambda} \sqrt{y^{2}+z^{2}}\right) \cdot e^{\varphi} \cdot\left\{\begin{array}{l}y \\ z\end{array}\right\}$, $\begin{aligned} & \text { where } \\ & \varphi=\frac{2 \pi}{\lambda}(|\vec{R}|+x / \beta) \begin{array}{l}\text { modified } \\ \text { Bessel } \\ \text { function of the } \\ \text { first order }\end{array}\end{aligned}$

$$
\begin{aligned}
& \text { To turn to the } \\
& \text { target system: }
\end{aligned}\left\{\begin{array}{lr}
x=x^{\prime} \cos \theta_{r}-y^{\prime} \sin \theta_{r} & \text { Target surface } p \\
y=x^{\prime} \sin \theta_{r}+y^{\prime} \cos \theta_{r} \\
z=z^{\prime} & y^{\prime}=f\left(x^{\prime}, z^{\prime}\right)
\end{array}\right.
$$

DR Intensity:
$\begin{aligned} & \begin{array}{l}\text { Integral is assumed to be taken } \\ \text { over the target surface }\end{array}\end{aligned}\left\{\begin{array}{l}E_{\leftrightarrow} \\ E_{\perp}\end{array}\right\}=\int_{z^{\prime}} \int_{x^{\prime}}\left\{\begin{array}{l}\widetilde{e}_{\leftrightarrow} \\ \widetilde{e}_{\perp}\end{array}\right\} d x^{\prime} d z^{\prime} \quad \begin{aligned} & W_{\leftrightarrow}=\left|E_{\leftrightarrow}\right|^{2} \\ & \\ & W_{\perp}=\left|E_{\perp}\right|^{2}\end{aligned}$

Illustration of radiation properties from bent target for simple target geometry

Near field model may be simplified considerable for case of axial symmetry and parabolic target in far field approach:

$$
W(\hat{\rho}, \delta \hat{\theta})=\left|\int_{r=0}^{\hat{r}_{r}} \sqrt{\alpha} 2 \pi r \cdot K_{1}\left(\frac{2 \pi}{\gamma \lambda} r\right) e^{i \sqrt{2} \pi r^{2} / \hat{\rho}} J_{1}(2 \pi r \cdot \delta \hat{\theta}) d r\right|^{2}
$$

where
$\hat{\rho}=\rho / \gamma^{2} \lambda, \quad \hat{r}_{t}=r_{t} / \gamma \lambda, \quad \delta \hat{\theta}=\delta \theta \cdot \gamma, \quad \rho$ is a target curvature radius,
$\boldsymbol{r}_{\boldsymbol{t}}$ is a radius of the target projection on the plane, normal to the observation direction, $\delta \theta$ is the observation angle in respect to the direction of specular reflection, $\boldsymbol{J}_{\mathbf{1}}$ is a first order Bessel function.

Convex target

Concave target results defocusing effect as well as convex one.

Example:
$\hat{\rho}=\rho / \gamma^{2} \lambda \quad$ Japanese flat target
$\gamma=2500$
$\lambda=0.5 \cdot 10^{6} \mathrm{~m}$

We choose next target surface profile:

Sample for the bent slit target with slit width a $=0.01 \gamma \lambda, \rho=\gamma^{2} \lambda / 1000, \alpha^{\prime}=0.01$ in far field approach

$$
W_{\perp}=\left|\int_{x^{\prime}=-b / 2}^{b / 2}\left(\int_{z=-b / 2}^{-a / 2} \tilde{e}_{\perp} d z^{\prime}+\int_{z^{\prime}=a / 2}^{b / 2} \widetilde{e}_{\perp} d z^{\prime}\right) d x^{\prime}\right|^{2}
$$

Horizontal angular distribution for the different electron positions

DR angular distribution for Gaussian transverse beam profile

$$
W_{\perp}\left(\theta_{z}, \sigma_{e}^{\prime}\right)=\frac{1}{\sqrt{2 \pi \sigma_{e}^{\prime 2}}} \int W_{\perp}\left(\theta_{z}, x_{e}^{\prime}\right) e^{-\frac{x_{e}^{\prime 2}}{2 \pi \sigma_{e}{ }^{\prime 2}} d x_{e}^{\prime}}
$$

Example for

$$
\begin{aligned}
& \lambda=0.5 \mu, \gamma=60000 \\
& \rho=0.01 \cdot \gamma^{2} \lambda \approx 18 \mathrm{~m} \\
& \alpha=10 \mathrm{mrad}
\end{aligned}
$$

Beam size

$\sigma_{\mathrm{e}} \approx(15 / \sqrt{ } 2) \cdot \lambda \approx 11 \lambda$
may be measured

Main method advantages

- Radiation intensity is comparable to the OTR intensity. This allows us to look forward to the single bunch measurements using CCD.
- Very wake dependence on the Lorenz-factor allows to use this method for high energy electron beams.
- There is reserve (target crossing angle and wavelength) for using of this method for submicron beams.

