

Electrooptical Longitudinal Bunch Length Measurements

David A. Reis FOCUS Center and University of Michigan Stanford PULSE Center

SNIC/International Symposium Detector Development April 3–6, 2006. Stanford Linear Accelerator Center

D. H. IVEID

Single Shot X-ray Studies of Ultrafast Disordering In Solids

D. A. Reis

High amplitude atomic motion in photoexcited bismuth

anharmonicity or electronic softening? (Fahy and Reis PRL 93 109701, 2004) Murray *et al.* PRB 72, 060301 (R) 2005.

D. A. Reis

Standard Pump-probe experiments

D. A. Reis

Indirect X-ray Pulse Arrival Time

S. H. Lee *et al.* Opt. Lett., 29(22):2602–2604, 2004 A. Cavalieri *et al.*, Phys. Rev. Lett. 94 144801, 2005

Pockels' effect (linear electrooptic)

 $ar{4}3m$, with E perpendicular to (110) $x' = [1/2, -1/2, 1/\sqrt{2}]$ $y' = [1/2, -1/2, -1/\sqrt{2}]$ $n'_x = n_0 - rac{1}{2}r_{41}n_0^3E$ $n'_y = n_0 + rac{1}{2}r_{41}n_0^3E$

Retardation:

 $\Gamma = \frac{2\pi}{\lambda} r_{41} n_0^3 EL$ n~3, r₄₁~4pm/V

Spatially Resolved Electro-Optic Sampling (EOS)

Arrival time and duration of bunch is encoded on profile of laser beam

Considerations and limitations

- Phase matching (group velocity mismatch THz and optical)
- dispersion in index and pockels' coefficient.
- Interference between electronic and ionic susceptibility
- Phonon resonances
- Fabry-perot effects ("echos")
- Angular dependence.
- Laser pulse duration and bandwidth
- Complex field profile radiated from e-beam (transition-,diffraction- and Cherenkov radiation, cavity modes of beam pipe....)

EOS measure of e⁻ beam bunch compression resolution limited by crystal

Single-Shot EOS Data at SPPS (100µm ZnTe)

Electron beam-X-ray beam timing correlation: EOS and "Melting"

EOS and Melting s = 60 fs, likely resolution limited.

A. Cavalieri et al., Phys. Rev. Lett. 94 144801, 2005

Using Electrooptic sampling for Random sampling

D. M. Fritz *et al.* Preliminary Results!!!

Laser pump x-ray probe

1.74 mJ/cm2 (absorbed), <n>-1%; f =2.5 THz; $<\Delta x>$ = 5pm; A > 0.92 pm

D. A. Reis

SPPS Collaborating Institutions

Universities UC Berkeley U. of Chicago/BIOCARS Copenhagen University U. Of Michigan Uppsala University Chalmers University of Technology Lund University

Spokesperson

Prof. R. Falcone Prof. K. Moffat Prof. J. Als-Nielsen Prof. P. Bucksbaum Prof. J. Hajdu

Laboratories

ANL/APS and MSD BNL/NSLS DESY/HASYLAB ESRF LLNL/CMS SLAC/SSRL

Spokesperson

Dr. Dennis Mills Dr. D. Peter Siddons Prof. J. Schneider Dr. F. Sette Dr. A. Nelson Dr. J. B. Hastings

Approximately 50 scientists

D. M. Fritz^{1*}, B. Adams², C. Blome^{3*}, P. H. Bucksbaum^{1*}, A.L. Cavalieri^{4*}, S. Engemann^{5*}, S. Fahy⁶, P. H. Fuoss^{7*}, K. J. Gaffney^{5*}, P. Hillyard^{8*}, M. Horn von Hoegen⁹, M. Kammler¹⁰, J. Kaspar^{8*}, D. von der Linde^{9*}, A. M. Lindenberg^{5*}, S. H. Lee^{1*}, B. McFarland^{1*}, D. Meyer^{8*}, E. Murray⁶, M. Nicoul^{9*}, R. Pahl^{11*}, J. Rudati^{2*}, D. P. Siddons^{12*}, K. Sokolowski-Tinten^{9*}, J. K. Wahlstrand¹³, J. B. Hastings^{5*}, and D. A. Reis^{1*}

¹FOCUS Center and Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA ²Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA ³Deutsches Elektronen-Synchrotron, Norkestrauss 85, 22607 Hamburg, Germany ⁴Max-Planck-Institut of Quantum Optics, Hans-Kopfermann-Str. 1 D-85748, Garching, Germany ⁵Stanford Synchrotron Radiation Laboratory, Menlo Park, CA, 94025, USA ⁶Department of Physics and Tyndall National Institute, University College, Cork, Ireland ⁷Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA ⁸Department of Chemistry, Stanford University, Palo Alto, CA 94305, USA ⁹ Institut fuer Experimentelle Physik, Universitaet Duisburg-Essen, Lotharstr. 1, 47048 Duisburg, Germany ¹⁰Consortium for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA ¹¹Institut fuer Halbleitertechnologie, Universitaet Hannover, 30167 Hannover, Germany ¹²National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA ¹³JILA and University of Colorodo, Boulder, CO 80309, USA *Also Member Subpicosecond Pulse Source Collaboration

This work was supported in part by the US DOE, BES Contract No. DE-FG02-00ER15031 and from the NSF FOCUS physics frontier center, Grant #. 0114336.