Neutrinos: Canaries in the Coal Mine

http://amanda.uci.edu

Steve Barwick, UC Irvine

http://www.ps.uci.edu/~anita

Neutrinos are like "canaries in a coal mine"

Neutrinos are most weakly interacting particle that are stable. They provide an early warning that something in physics is amiss.

EHE Neutrinos Explore Higher Dimensions

Friess, Hooper & Han astro-ph/0204112

Log(E) (eV)

PHOTONS: not deflected, but: reprocessed in sources, absorbed in I R (100 TeV), and CBR
PROTONS: deflection in magnetic fields, GZK cutoff
NEUTRINOS: not absorbed or deflected, hard to see

Motivation: GZK neutrinos are a guaranteed source

- Ultra-high energy cosmic rays:
 - From where??! And How??
- Standard Model:
 - Ordinary charged particles accelerated by distant sources: AGN, GRBs...
- If so: GZK neutrinos are the signature
 - Probably necessary and sufficient to confirm standard GZK model

Data suggests GZK cutoff observed

-or not

Log(E/eV)

Models of diffuse EHE Neutrinos

Physics goals

Cosmic Ray origin

* candidate acceleration sites: Active Galactic Nuclei, Gamma Ray Bursts

* Measure extra-terrestrial flux @ TeV – EeV energies

Dark matter / exotic particles

Indirect Dark Matter search: excess from Sun/Earth centre Magnetic monopoles : heavy and slow particles

• SuperNova monitor of the Milky Way

bursts of low-energy neutrinos (global noise rate increase)

The AMANDA-II Collaboration

- Bartol Research Institute, University of Delaware
- BUGH Wuppertal, Germany
- Universite Libre de Bruxelles, Brussels, Belgium
- DESY-Zeuthen, Zeuthen, Germany
- Dept. of Technology, Kalmar University, Kalmar, Sweden
- Lawrence Berkeley National Laboratory, Berkeley, USA
- Dept. of Physics, UC Berkeley, USA
 - Dept. of Physics and Astronomy, UC-Irvine, USA
- Institute of Physics, University of Mainz, Mainz, Germany
- University of Mons-Hainaut, Mons, Belgium
- Fysikum, Stockholm University, Stock
- Dept. of Physics, University of Alabama
- Vrije Universiteit Brussel, Brussel,
- Dept. Fisica, Univ. Simon Bolivar,
- Dept. of Physics and Astronomy, Penn State Contra-
- Dept. of Astronomy, Dept. of Physics, University of Wisconsin, Madison, USA
- Physics Department, University of Wisconsin, River Falls, USA
- Division of High Energy Physics, Uppsala University, Uppsala, Sweden

Institutions: 8 US, 9 European, 1 South American

AMANDA-II with TWR South Pole 2km Deep Ice

- AMANDA-II now reporting 97-00 data.
- Demonstrated technology after R&D period on ice properties and prototypes (10 years from start to finish)

Deploying an AMANDA sensor at -40C.

Science Potential/Opportunities of AMANDA-II

v_{μ} traditional way

S. Barwick ICRC, Aug 2001

V....

Point Source Astronomy

AMANDA II 2000 699 events

Sensitivity is 3x better than published

Data 2000 : PRL 92, 071102 (2004)

Gamma Ray Bursts

Shocks: external collisions with interstellar material or internal Collisions when slower material is overtaken by faster in the fireball.

Protons and photons coexist in the fireball

Green's Function Fluence Limit

following SuperKamiokande method (2002ApJ, 578:317F)

- Large effective areas (50 000 m² @ 1 PeV)

3 YEAR AMANDA POINT SOURCE SEARCH

SOURCE SIGNIFICANCE SKY-PLOT

NO EXCESS beyond randomly expected

Atmospheric Neutrinos!

Diffuse Source Astronomy

Diffuse Limits in AMANDA-II

• Atmospheric Neutrino Spectrum E= 1-100 TeV

• Cascade Topologies E= 1-1000 TeV

• Downgoing EHE analysis E=10³ - 10⁷ TeV

DIFFUSE LIMITS: Atmospheric $[\nu_{\mu}]$

Includes 33% systematic uncertainty

•

DIFFUSE LIMITS: UHE [Φ_{all} ,]

AMANDA-II (TWR 2003): expected further improvement using Waveforms

DIFFUSE LIMITS: SUMMARY

EXCLUDED PREDICTIONS

Specific predicted model spectra excluded by AMANDA

Reference	Prediction	Analysis	Detector
Szabo,Protheroe (1992) Protheroe (1997) Stecker,Salamon (1996)	SPH92L P96pγpp SSQC	Diffuse (97) [published]	AMANDA-B10
Szabo,Protheroe (1992) Protheroe (1997) Stecker,Salamon (1996) Nellen et al.(1993)	SPH92L P96pγpp pγ:SS pp:N	Diffuse (00) [in progress]	AMANDA-II
Stecker(1991) Stecker,Salamon (1996) Szabo,Protheroe (1992) Szabo,Protheroe (1992) Protheroe (1996)	SDSS SS Quasar SP u SP 1 P pp+pγ	Cascades (00) [submitted]	AMANDA-II
Stecker,Salamon (1996) Protheroe (1996)	S96 P97	UHE (97) [submitted]	AMANDA-B10

Exotic Phenomena

WIMP Capture and Annihilation

Sensitivity to the Muon Flux from WIMP Annihilation in the Center of the Sun

AMANDA-II results: • based on 1 yr of data • 2 yr combined analysis soon 10^{2} 10^{5} 10^{5} 10^{5} 10^{5} 10^{5} 10^{5} 10^{4} 10^{3} 10^{2} 10^{2}

The Future of Neutrino Astonomy

ICECUBE

Perhaps First Km³ Neutrino Detector ~2010

First funds 2002

70-80 strings,
 60 PMT's each;

•
$$V \approx 1 \text{ km}^3$$
,
 $E_{th} \sim 0.5 - 1 \text{TeV}$

Ideally suited for $E_v < 10 \text{ PeV}$

South Pole IceCube

- 70-80 Strings
- 60 PMT/String
- **Instrumented volume:** 1 km3 (1 Gigaton)
- \$272 M •
- First string -Jan 05
 Completion 2010

Hose-reel at South Pole (Jan 2004)

Hose-reel with hose, (Nov 2003)

ANtarctic Impulsive Transient Antenna

www.ps.uci.edu/~anita

- NASA funding started 2003 for first launch in 2006
- Phase A approval for SMEX ToO mission, >2006

ANITA concept

Shower profile observed by radio (~2GHz)

- Measured pulse field strengths follow shower profile very closely
- Charge excess also closely correlated to shower profile (EGS simulation)
- Polarization completely consistent with Cherenkov

Noise Tests at South Pole

- Ambient noise on the high plateau

Initial Results from Polar Studies

- It looks good so far

Ice Attenuation at South Pole

- from 200MHz to 700MHz

Jan. 2004

Ice Attenuation at South Pole

- from 200MHz to 700MHz

multifrequency echogram, Amundsen-Scott Station, 400ns pulse

A clean reflection from the bottom implies that the attenuation lengths are very long!

ANITÀ

Ice Attenuation at South Pole

- from 200MHz to 700MHz

ANITA-lite

2 Receiver Horns

Electronics

Piggyback on TIGER Launch Dec '03

RF Survey of Antarctica

ANITA ANITA-lite prior to launch @ WF

ANITA-lite flight path 03/04

18 days at float altitude

1.25 revolutions, landing near Mawson Station

Data recovered in Feb 04

ANITA

ANITA-lite timing resolution

Ground antenna transmits calib. pulse to Anita-lite @40km

Expected Angular Resolution for ANITA $\delta\theta \sim 0.5 \text{ deg}$ $\delta\phi \sim 2 \text{ deg}$

ANITA-lite BG event

Initial scan of data reveals no obvious V signal

analysis Dominated by payload local noise Circularly polarized impulses (TDRSS relay turn-on?) are closes to true impulses (but not) Glitches from balloon support package (charge controller MOSFETS) **Injected 3 and 5 sigma** signals (overlain on actual thermal noise) used to test algorithm efficiency

Neutrino Limits and Projected Sensitivity

- Anita-lite 03 sensitivity (7 days)
- ANITA sensitivity:
 - $v_{\mu} \& v_{e}$ included, full-mixing parameterized
 - 1.5-2 orders of magnitude gain
- <u>These are all limits based on radio</u> <u>detection!</u>

ANTA) Why is ANITA a good idea?

- Frontier Science and very exciting
 - Win-win with GZK neutrinos
- Scans ice over 600km radius, and enormous detector volume!
- Radio signal can be calculated precisely and has been measured at high energy lab unique signature!
- Energy resolution is relatively good
- Antenna can be absolutely calibrated by man-made radio transmitter embedded in deep hole (eg. Vostok)
- Clean signal
 - Linearly polarized, must originate in ice, distinct few ns time structure of pulse, "beam-off" in directions over water
- Balloon flight path is far from sources of confusing background

Revolutionary concept in EHE neutrino detection

Outlook

• With AMANDA-II, the requisite tools to inaugurate multi-messenger astronomy are available.

• To probe the neutrino fluxes at highest energies, new techniques are being developed based on radio cherenkov detection.

• ANITA extends search volume to 10^6 m^3 .

High Energy Neutrino Roadmap

Experimental Limits

Experimental all-flavor limits

neutrino telescope

Pulse-phase interferometer (6 antennas): gives intrinsic beamsize: of ~3° elevation by ~10° azimuth for arrival pulse

Improves by **~factor of 2** with better pulse timing, beam calibration

Neutrino direction constrained:

~1-2° in elevation by earth absorption, and3-5° in azimuth by polarization angle

EeV (10¹⁸ eV) Science Goals

- GZK from $p+\gamma_{CMB}$
 - Detection would confirm highest energy cosmic rays are extragalactic and composed of ordinary stuff like protons, helium
 - Provides neutrinos to study predictions of Grand Unified Models, the Holy Grail of Particle Physics
 - Non-detection would be great surprise
- Supermassive Black Hole/ AGN models
 - Compared to searches at 1-100 TeV, probes a complementary set of models
 - Salamon and Stecker ('95), Protheroe('97), Mannheim('95), Halzen and Zas('97)
- Exotic sources physics of the early Universe
 - Topological defects, Heavy Boson decay, Z-burst, micro-Blackholes

EHE Detection Guidelines (E>10¹⁶ eV)

Loss tangent a strong function of temperature

For cold ice, UHF (0.1-1GHz) best

Antarctic data approaches pure ice values

 $L_{\alpha} = \lambda [\pi n (\epsilon''/\epsilon')]^{-1} \sim 6 \text{ km at 300 MHz & -60C (pure ice)}$
New results—SLAC T460 June 2002 Follow up experiment to SLAC T444, with rock-salt target

- Much wider energy range covered:
 - < 1PeV up to 10 EeV
- Radio Cherenkov observed over <u>8</u> <u>orders of magnitude</u> in radio pulse power

Schedule for ANITA

- 03/04 Fly ANITA-lite, measure attenuation lengths in ice
- 04 Recover ANITA-lite, analyze data, begin construction at UCI
- 05 Jan :Begin assembly and integrationJune: test partial instrument in New Mexico, mechanicalAug: Begin final integration and testing
- 06 June: NSBF integration in Palestine, TXSept: Ship to AntarcticaDec : Integrate and Launch ANITA payload
- 07 Jan : Recover payload, ship back to UCI

Commensurate with graduate student lifetime!

EHE v Detectors: Summary

- Several next generation techniques underway
- Wide variety of technologies for Nth gen
 (keep an eye on radio, space-based fluorescence, acoustic)
- INPAC can help assess the most promising technologies, guide the planning for the Nth generation detectors, and coordinate with similar efforts involving different messengers (gravity wave, cosmic ray, gamma ray)
- Nth gen detectors will be require more, perhaps a lot more, resources that need to be well managed

µ-Flux Limits for Point Sources

ANITA-lite timing resolution

Ground antenna transmits calib. pulse to Anita-lite @40km

UHF tone bursts were sent as a calibration signal to ANITA-LITE from the ground at the start of the flight.

- > ANITA goal: 300 ps at ~3 sigma trigger threshold.
- ANITA-LITE already 50% better!
- Critical to pulse interferometry.

