Physics of Neutrino Mass

R. N. Mohapatra

University of Maryland, College Park.

Presented at the SLAC Summer Institute, 2004

Main theme of the talk

OBSERVATIONS ?

ABOUT NEW PHYSICS ?

Summary of what we now know

(B. Kayser's talk for details)

$$\rightarrow \quad \nu_i \neq 0; \ \theta_{ij} \neq 0$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\alpha i} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$> PMNS = \begin{cases} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{cases} K$$

$$> i\phi_1, e^{i\phi_2}$$

$$c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} \ c_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta}$$

$$\left. \begin{array}{c} s_{13}e^{-i\delta} \\ s_{23}c_{13} \\ c_{23}c_{13} \end{array} \right) K$$

$$_{ij}$$
 at 3σ

$$^{2}2\theta_{12} \simeq 0.71 - 0.93$$

confirms Mikheyev-Smirnov-Wolfenstein effect

$$\geq$$
 $^22\theta_{23} \simeq 0.89 - 1.00$

$$>$$
 13 ≤ 0.23

MASSES

 (3σ)

- 1. ::NORMAL:: $\rightarrow m_1 \ll m_2 \ll m_3$ $\rightarrow \Delta m_{31}^2 > 0$; $m_3 \simeq 0.05 \text{ eV}$; $m_2 \simeq 0.009 \text{ eV}$
- 2. ::INVERTED:: $\to m_1 \simeq m_2 \gg m_3 \to \Delta m_{31}^2 < 0; m_1 \simeq m_2 \simeq 0.05 \text{ eV}$
- 3. ::DEGENERATE:: $m_1 \simeq m_2 \simeq m_3 \to \Delta m_{31}^2 > or < 0$

that we stll do not know is:

Is neutrino its own antiparticle ? i.e. is $\nu=\bar{\nu}$

If $\nu = \bar{\nu}$, it is Majorana; otherwise Dirac

Overall mass scale

and (ii) and absolute mass in case(iii)

- 1. 3H Decay end point: $\Sigma_i m_i^2 |U_{ei}|^2 \leq 2.2 \text{ eV}^2$ (KATRIN expected to improve it to 0.2 eV)
- 2. Cosmology: $\Sigma m_i \leq 0.4$ eV (WMAP, SDSS: will be improved by Planck)
- 3. If neutrino Majorana i.e. $\nu=\bar{\nu}$, $\beta\beta_{o\nu}$ results imply: $\Sigma_i\,U_{ei}^2m_i\leq 0.3-0.5$ eV (Expected improvement to 0.03 eV)

How many neutrinos?

coupling to Z (active neutrinos $u_{e,\mu, au}$)

(one or two) that do not couple to Z (sterile neutrinos ν_s), but mix with known neutrinos. Masses ≈ 1 to a few eV.

> and WMAP pprox 2

 $_s$ from BBN (≤ 0.3

formation.

Prospects for discriminating between Dirac and Majorana neutrino

 2 , $etaeta_{0
u}$ and KATRIN result can tell us

a lot:

there are 8 possibilities and in each case we learn something

$\beta \beta_{0\nu}$	Δm_{32}^2	KATRIN	Conclusion
yes	> 0	yes	Degenerate, Majorana
yes	> 0	No	Degenerate, Majorana
			or normal or heavy exchange
yes	< 0	no	Inverted, Majorana
yes	< 0	yes	Degenerate, Majorana
no	> 0	no	Normal, Dirac or Majorana
no	< 0	no	Dirac
no	< 0	yes	Dirac
no	> 0	yes	Dirac

Theoretical Implications: (first only three neutrinos)

$$\rightarrow$$
 $\nu \ll m_{u,d,e}$?

mixings ?

$$o$$
 $rac{\Delta m_{\odot}^2}{\Delta m_A^2} \ll 1$ but $\gg \left(rac{m_{\mu}}{m_{ au}}
ight)^2$ (for normal hierarchy)?

standard model e.g. do they reveal any symmetries for leptons, quarks; any new forces, any new physical effects?

unification which unifies quarks and leptons (specially since there are so many differences)?

A Primer on Fermion masses and mixings

$ar{\psi}_L\psi_R$ in the

Lagrangian

If there are more fermions of the same kind, then

$$\mathcal{L}_{mass} = M_{ab} \bar{\psi}_{a,L} \psi_{b,R}$$

> ab = Mass matrix

$$U_L M U_R^{\dagger} = diag(m_1, m_2, \cdot, \cdot)$$

- > $_{L,R}$ gives the mixings between different fermions, ψ_a and m_i are the actual masses e.g. for quarks, $U_{L,ab}$ contains the CKM mixings.

the mass matrix

fermions: $\bar{\psi_L}\psi_R$ or $\psi_L^TC^{-1}\psi_L$ (or $L\leftrightarrow \mathsf{R}$)

- $i^{\alpha}\psi$, the first mass is invariant whereas the second term is not;
- fermions and those with both kinds are called Majorana fermions
- symmetry: e.g. for $e,\mu,q...$, extra symmetry is $U(1)_{em}$; since $Q(\nu)=0$, no such symmetry is there for ν
- small mass is easier for Majorana neutrino.

Standard model

Glashow, Weinberg, Salam

$$\sim c \times SU(2)_L \times U(1)_Y$$

$$\left(egin{array}{c} u_L \ d_L \end{array}
ight); \ \psi_L \equiv \left(egin{array}{c}
u_L \ e_L \end{array}
ight);$$

Singlets: u_R ; d_R ; e_R

Higgs:
$$H \equiv \begin{pmatrix} H^0 \\ H^- \end{pmatrix}$$

$$> Y = h_u \bar{Q}_L H u_R + h_d \bar{Q}_L \tilde{H} d_R + h_e \bar{\psi}_L \tilde{H} e_R + h.c.$$

appropriately chosen form for the potential which gives $< H^0 >= v_{wk}$

$$> u_{a,L}M^u_{ab}u_{b,R} + \bar{d}_{a,L}M^d_{ab}d_{b,R} + \bar{e}_{a,L}M^e_{ab}e_{b,R};$$

lacksquare $_{
u}=0$ in the standard model

fermions: $\bar{\psi_L}\psi_R$ or $\psi_L^TC^{-1}\psi_L$ (or $L\leftrightarrow \mathsf{R}$)

- $u_L^T C^{-1} \nu_L \text{ could be there}$
- exact symmetry, B-L

hidden in the standard model that would give $m_{\nu} \neq 0$?

We ignored gravity in our considerations

gravitational effects such as black holes or worm holes etc.

standard model e.g. $(\psi_L H)^2/M_{P\ell}$;

 $u \simeq rac{v_{wk}^2}{M_{P\ell}} \sim 10^{-5}$ eV- clearly too small to explain atmospheric neutrino deficit.

Std model successful but unsatisfactory

- 1. Not symmetric between quarks and leptons, even though weak interactions are
- 2. What is the origin of parity violation?
- 3. Electric charge formula: $Q=I_{3L}+\frac{Y}{2}$; we know what is I_{3L} ; what is Y- an adjustable parameter !!
- 4. Can neutrinos help us understand these issues better ?

Neutrino mass and Nature of new physics

R to the standard model

 $\rightarrow Y$: $h_{\nu}\bar{\psi}_{L}H_{\nu_{R}} + h.c.$

 $ightharpoonup _R=N_R$ is std model singlet, new term allowed by gauge invariance: $M_RN_R^TC^{-1}N_R+h.c.$

Important point: M_R breaks B-L symmetry

 \succ $L,N_R)$ system: $\begin{pmatrix} 0 & h_{
u}v \\ h_{
u}^Tv & M_R \end{pmatrix}$

> $R\gg h_{
u}v$, mass eigenvlaues have a heavy : ightarrow: M_R and a light set: $\mathcal{M}_{
u}\simeq -rac{h_{
u}^2v^2}{M_R}$. This implies $m_{
u_i}\ll m_{u,d,e...}$

mass

Gell-Mann, Ramond, Slansky; Yanagida; Glashow; R. N. M., Senjanovic (1979)

Diagonalize:

$$U^T \mathcal{M}^{
u} U = egin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix}; V_L M^e V_R^\dagger = egin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_ au \end{pmatrix}$$

Neutrino mixing matrix $U_{PMNS} = V_L^{\dagger} U$

Implications of Seesaw

beta decay and other $\Delta L = 2$ processes;

 $M_{R,max} \simeq rac{m_t^2}{\sqrt{\Delta m_A^2}} \simeq 10^{14} - 10^{15} \; {
m GeV}$

 M_R close to the conventional SUSY GUT scale !!

Could m_{ν} be the first indication of grand unification ?

Seesaw as a way to understand the origin of matter

$$\frac{n_B - n\bar{B}}{n_\gamma} \simeq 10^{-10}$$
?

in RH neutrino couplings), then

$$> \qquad _{R} \rightarrow \ell + H) - \Gamma(N_{R} \rightarrow \bar{\ell} + H) \neq 0 \rightarrow \text{lepton}$$
 asymmetry;

asymmetry into baryon asymmetry.

Why Seesaw is theoretically so appealing?

under Parity

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix} \leftrightarrow \begin{pmatrix} u_R \\ d_R \end{pmatrix}; \quad \begin{pmatrix}
u_L \\ e_L \end{pmatrix} \leftrightarrow \begin{pmatrix} N_R \\ e_R \end{pmatrix};$$

- 1. Electroweak gauge group expands to $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$
- 2. weak interactions become parity conserving $\mathcal{L}_{wk} = \frac{g}{2\sqrt{2}}(\vec{W}_{\mu,L}\cdot\vec{J}_L^{\mu}+\vec{W}_{\mu,R}\cdot\vec{J}_R^{\mu})$
- 3. Electric charge: $Q = I_{3L} + I_{3R} + \frac{B-L}{2}$ Involves all physical quantum numbers

Neutrino mass linked to parity violation

- 1. Why are low energy weak int. V-A?
- 2. Why $m_{\nu} \ll m_{u,d,e}$?

MASS

L

 $_{
u}$ CONNECTED TO THE SUPPRESSION OF V+A currents

Implication of Parity for seesaw

$$m_
u \simeq f rac{v_{wk}^2}{v_R} - rac{h_
u^2 v_{wk}^2}{f v_R}$$
; (Type II seesaw)

$$>$$
 $_
u \simeq -rac{h_
u^2 v_{wk}^2}{f v_R}$ (Type I seesaw)

A simple pointer to Type II seesaw

> $_{
u}\sim h_{e}\sim$ hierarchical, Type I seesaw ightarrow $m_{1}\ll m_{2}\ll m_{3}$ (hierarchical) i.e.

How to understand large mixings?

$$>$$
 $_{
u}=\begin{pmatrix} a & b \\ b & a \end{pmatrix} \rightarrow U_{
u}=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix};$ Maximal

mixing;

 $\mathcal{M}_{\nu} = \sqrt{\Delta m_A^2} \begin{pmatrix} 1 + \epsilon & 1 \\ 1 & 1 \end{pmatrix};$

possible $u_{\mu} \leftrightarrow
u_{ au}$ symmetry.

HOW TO TEST FOR THIS SYM.?

large solar and near maximal atmospheric

 $_{23}$ and large $heta_{12}$ and small $heta_{13}$.

$$\sqrt{rac{\Delta m_\odot^2}{\Delta m_A^2}} \simeq heta_{Cabibbo} \simeq rac{1}{5}$$

parameters?

 $\beta\beta_{0\nu}$ measures d; unfortunately not very well for normal hierarchy WHAT ABOUT THE REST?

θ_{13} can provide very important information

 \Rightarrow 13 probes $\mu \leftrightarrow \tau$ symmetry and provides information about a,b,c in \mathcal{M}_{ν} : Three cases

$$>$$
 13 = 0

predicts
$$\theta_{13} \simeq \epsilon^2 \simeq \frac{\Delta m_{\odot}^2}{\Delta m_A^2} \simeq 0.04$$
;

$$\theta_{13} \simeq \epsilon \simeq \sqrt{\frac{\Delta m_{\odot}^2}{\Delta m_A^2}} \simeq 0.2;$$

Conclusion

 $_{13}$ ia a measure of the extent of $\mu\leftrightarrow \tau$ symmetry in the neutrino mass matrix indicated by near maximal atmospheric mixing angle; zero to small to large, \rightarrow exact to approximate to no symm.

proposed to measure θ_{13}

Inverted Hierarchy

 \succ $_{23}$ and large solar angle;

 $L_e-L_\mu-L_ au$ symmetry; Thus we have a symmetry explanation of large mixing angles.

- > $\frac{\Delta m_{\odot}^2}{\Delta m_A^2}$; solar mixing angle $->d\epsilon\geq 0.5$; observable in $\beta\beta_{0\nu}$ decay.
- e.g. $a=c o heta_{13}=0$ etc;
- departure from $L_e-L_\mu-L_ au$ symmetry

$$= e - L_{\mu} - L_{ au}$$
 naturally explains

$$\nu = \sqrt{\Delta m_A^2} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$ightarrow \Delta m_{\odot}^2 = 0$$
 and $heta_{12} \ = \ rac{\pi}{4}$ (maximal)

 $\gg {\Delta m_{\odot}^2 \over \Delta m_A^2} \ll 1$ because of small breaking of symmetry, which is also necessary to explain observed $\theta_{12} \simeq 33^0$

$$\geq$$
 $\frac{2}{31} < 0.$

Can seesaw explain large neutrino mixings?

angles and 3 phases

parameters- grand unification, horizontal symmetry etc.

© Rabi Mohapatra, 2004 University of Maryland

Strategy for probing new physics

SYMMETRIES AND NEW PHYSICS e.g evidence for $L_e-L_\mu-L_ au$ symmetry would seriously argue against the idea of grand unification.

considerations such as SUSY, Grand unification, string theory etc and study predictions for possible directions.

$m_{ u}$ and Grand unification

hypothesis

 $>\hspace{-3mm} s,g_2,g_1$ into one coupling at a high scale ($10^{15}-10^{16}~{\rm GeV}$

- 1. Raises the hope of explaining the free parameters of the standard model
- 2. Raises new problems: why $m_W \ll M_U$? i.e. why dont radiative corrections push m_W up to M_U ?
- 3. Solving this needs supersymmetry which removes infinities from Higgs mass;
- 4. Simple SUSY GUT gives coupling unification scale $M_U \sim 2 \times 10^{16} \; {\rm GeV}$

$$= R \simeq M_U$$

due to higher symmetry of GUT theories which will reduce number of free parameters

© Rabi Mohapatra, 2004 University of Maryland

Another promise of SUSY GUT

versa: $Q \leftrightarrow \tilde{Q}$,...

- \nearrow under which std model particles are even and their susy partners are odd.
- $ightharpoonup_p$ odd particle is stable.

SO(10) SUSY GUT and neutrinos

$$> \begin{pmatrix} u & u & u & \nu \\ d & d & d & e \end{pmatrix}_{L,R} \text{ into } \mathbf{16} \text{ dim. rep of SO(10)}$$

 $ightharpoonup _R$ needed for seesaw automatically

properties of asymptotic parity conservation.

as a natural symmetry and gives a stable dark matter

Breaking SO(10) down

$$_L \times SU(2)_R \times SU(4)_c \rightarrow \mathrm{std}$$
 model

Minimal SUSY SO(10) For Neutrinos with dark matter

number of free parameters and predict masses

 ψ_a 16- matter field Higgs ${f 10}(H), {f 126}(\Delta) \oplus {f 1\bar{2}6}(ar{\Delta}), {f 210}$ (only first two couple to matter by group theory

 $\mathcal{L}_Y = h_{ab}\psi_a\psi_bH + f_{ab}\psi_a\psi_b\overline{\Delta}$

 \blacktriangleright $u, H_d) \mbox{ from } H \mbox{ and}$ another from $\overline{\Delta}$ All doublets can have vevs

minus $M_Z o$ total of 12 parameters.

for quarks; 3 for charged leptons and 18 for the neutrino sector \rightarrow a total of 31 parameters

angles;

all but one neutrino masses and mixing angles predicted

breaking sector; this can be included)

Babu, RNM (92); Bajc, Senjanovic, Vissani (2002); Goh, RNM, Ng (03)

Predictions of the minimal SO(10):

 $_b \simeq m_ au$ at the GUT

scale due to radiative corrections

Figure 1: $sin^22\theta_{12}$ vrs $sin^22\theta_{23}$; scatter corresponds to different allowed quark mass values

Figure 2: scatter corresponds to uncertainty in quark mass values

 θ_{13}

 $= e_3 \equiv \theta_{13}$ and just below the present upper limit: "high" value due to no $\mu \leftrightarrow \tau$ symmetry (see before)

If MiniBoone confirms LSND

- $ightharpoonup^2$'s to explain solar, atm and LSND results; How can one accomplish this?
- $\mu \bar{\nu}_e\text{'s whereas solar is in }\nu_e \nu_{\mu,\tau};$ so could it be that $\nu\text{'s have different masses from }\bar{\nu}\text{'s-that would give us room for a total of 4 <math display="inline">\Delta m^2\text{'}$

invariance, which is one of the immediate implications of local Lorentz Inv field theory; B. KamLand which sees oscillations in $\bar{\nu}_e - \bar{\nu}_{\mu,\tau}$ disfavors this.

Sterile neutrinos

two) sterile ν_s with mass of order 1 to few eV; (2+2), (3+1) or (3+2) scenarios.

$$\nu_s$$
 ———

$$\rightarrow \qquad \qquad \nu_s \leq 0.3$$

$$ightharpoonup \Sigma_i \, m_i \leq 0.4 \,\, \mathrm{eV}$$

Theoretical challenge of the sterile neutrinos

standard model would allow them to have arbitrary mass?

model-inspired by superstring theories

visible sector	mirror sector
$SU(3)_c \times SU(2)_L \times U(1)_Y$	$SU(3)_c \times SU(2)_L \times U(1)_Y$
$W,Z,\gamma,$ gluons	$W,Z,\gamma,$ gluons
$\left(egin{array}{c} u_L \ d_L \end{array} ight)$	$\left(egin{array}{c} u_L \ d_L \end{array} ight)$
u_R,d_R	u_R,d_R
$egin{pmatrix} u_L \\ e_L \end{pmatrix}$	$egin{pmatrix} u_L \ e_L \end{pmatrix}$
e_R, N_R	e_R, N_R

Implications of mirror models for neutrinos

- \succ $_L$ (mirror ν 's) couple only to Z,W bosons and not the familiar Z,W bosons and are therefore candidates for sterile neutrinos ($\nu_s \equiv \nu$; three of them)
- $ightharpoonup_s$ are light for the same reason (seesaw) that known $u_{e,\mu, au}$ are.
- breaking in the mirror sector

How to reconcile with very precise cosmological observations?

generate masses and mixings: needs a light boson (with eV mass)

$$_{\nu} = 3$$

 \succ s annihilate and disappear by the time of recombination and do leave a strong imprint on CMB

Chacko, Hall, Oliver and Perelstein, 2004

scale seesaw

conventional GUT, seesaw type theories

Conclusions

lunched

- important for our understanding of new physics beyond the standard model e.g.
- mechanism whereas Dirac will surely turn attention away from it!!
- \geq 2 will clarify the mass pattern i.e. inverted vrs normal
- > $_{13}$ measurement will tell us about any inherent $\mu \leftrightarrow \tau$ symmetry
- clarify our understanding of one of the fundamental mysteries of cosmology i.e. origin of matter
- SO(10) is the prime group for neutrinos and generically predicts Normal hierarchy;
 - Again sign of Δm^2_{31} will be important for this

confirms LSND with implications.