Results from the Sudbury Neutrino Observatory

David Waller for the SNO Collaboration Carleton University, Ottawa, Canada SLAC Summer Institute 2004

Outline

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt
- Non-solar neutrino results
- SNO's future
- Summary

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D_2O + salt
- Non-solar neutrino results
- SNO's future
- Summary

Purpose of SNO

- Resolve Solar Neutrino Problem (SNP): measured flux of v from Sun is ~1/3 the predicted flux of Standard Solar Model.
 - Is Standard Solar Model wrong?
 - Do neutrinos oscillate from v_e to v_μ and/or v_τ ?
 - Something else happening (e.g. v_e to sterile v)?
- Observe v from ⁸B β-decay in Sun.

 ${}^{8}\text{B} \rightarrow {}^{8}\text{Be} + e^{+} + v_{e}$

Purpose of SNO

- If Solar Neutrino Problem due to v_e oscillation to v_{μ} and/or v_{τ} , SNO should provide direct evidence .
- SNO measures flux of v_e and flux of $(v_e + v_\mu + v_\tau)$.
- Previous expt's sensitive to only v_e or
 mainly v_e.
 Mater Čerenkov expt's:
 Water Čerenkov expt's:
 Kamiokande, Super-K

The SNO Detector

- 1,000 tonnes of D_2O .
- 6 m radius transparent acrylic vessel.
- 9,456 inward looking PMTs (with reflectors around PMTs have 54% geometrical acceptance).
- PMTs mounted on 9 m radius steel support structure.
- 7,000 tonnes of H_2O to support and shield D_2O .
- All materials carefully selected and tested to ensure minimal radioactive backgrounds (e.g. U, Th).

Location of SNO

- Located 2 km underground in active nickel mine near Sudbury, Canada
- Shielding from 2 km of rock reduces flux of cosmic ray muons to 70/day (>10⁹/day on surface).
- Reduced cosmic ray background improves sensitivity to solar neutrinos.

SNO timeline

- Phase 2: D₂O + Salt (NaCl)
- Phase 1a: D₂O
- Phase 3: $D_2O + {}^{3}He$ counters

SN

Neutrino reactions in SNO

Neutrino detection in SNO

- PMTs detect
 Čerenkov photons
 from relativistic e⁻:
 - e⁻ from CC or ES reaction
 - γ from *n*-capture (NC reaction) usually
 Compton-scatters e⁻
 (pair production less likely).

Neutrino detection in SNO

- Hit pattern from Čerenkov cone indicates physics event.
- PMT hit times and locations used to reconstruct e⁻ direction and location
- Number of PMT hits used to estimate electron energy.

Differentiating CC, ES and NC reactions

- Statistical separation based on several variables (e.g. during D₂O phase):
 - Electron kinetic energy, T (# of PMT hits)
 - Radial position of reconstructed vertex, (R/600)^3 (volume-weighted)

 Direction of electron w.r.t. Sun, cos θ_{sun}

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D_2O + salt
- Non-solar neutrino results
- SNO's future
- Summary

CC measurement with D_2O

- Measured CC reaction rate: $\phi_{CC} \equiv \phi(v_e)$
 - □ Can compare SNO's $\phi(v_e)$ to Super-K's $\phi(v_e)$ (assuming all ES interactions at Super-K due to v_e)
 - □ 3.3 σ difference between $\phi(v_e)$'s .
 - Conclusion: not all ES interactions at Super-K due to v_e !

NC measurement with D_2O

• Measured NC reaction rate: $\phi_{NC} \equiv \phi(v_e + v_\mu + v_\tau)$

 $\phi_{\rm CC} = (1.76^{+0.06}_{-0.05}(\text{stat}) \pm 0.09(\text{syst})) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$

 $\phi_{\rm NC} = (5.09^{+0.44}_{-0.43}(\text{stat}) {}^{+0.46}_{-0.43}(\text{syst})) \times 10^6 \text{ cm}^{-2} \text{s}^{-1}$

- 5.3 σ signal for solar neutrino oscillation.
- $\phi_{\rm NC}$ consistent with SSM with neutrino oscillation.

More results from first phase (pure D_2O)

- Measured Night-Day rate asymmetry (A^{e}_{N-D}) and electron energy spectra for Night and Day.
- At Night, v pass through Earth; CC and ES rates may increase due to matter enhanced oscillation of v_{μ}/v_{τ} to v_{e} .

$$A_{N-D}^{e} \equiv \frac{(\phi_{N} - \phi_{D})}{(\phi_{N} + \phi_{D})/2} = 0.140 \pm 0.063_{-0.014}^{+0.015}$$

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D₂O + salt
- Non-solar neutrino results
- SNO's future
- Summary

$D_2O + Salt: why add salt?$

- 2 tonnes of NaCl added.
- Change response to neutrons from NC reaction.
- CI has larger σ than ²H so
 n-capture efficiency improves.
- More energy released from ${}^{35}Cl+n$.
 - Higher E event means more NC events above kinetic E threshold of analysis (5.5 MeV)
 - Multiple γ's → Č. photons from NC reaction more isotropic in detector (ES and CC produce single electron).

Advantages of salt: *n*-detection efficiency

Advantages of salt: event isotropy

Calibration of detector

D_2O + Salt analysis: data set and data reduction

- Data recorded from July 2001 to October 2002 (2/3 of D₂O + salt data).
- 254.2 live days (detector maintenance and calibration during remaining time).
- Blind analysis performed
 - Analysis and cuts tuned with MC and "spoiled" subset of data.

Radioactive backgrounds

- Ex situ measurements show
 U and Th levels lower than goals (1 background neutron/day).
- Ex situ measurements consistent with in situ measurements
- In situ measurements more precise so used for solar neutrino analysis.

Backgrounds

Source	Events
D ₂ O photodisintegration	$73.1^{+24.0}_{-23.5}$
2 H(α, α)pn	2.8 ± 0.7 U and Th
$^{17,18}O(\alpha,n)$	1.4 ± 0.9
Fission, atmospheric ν (NC +	
sub-Cherenkov threshold CC)	23.0 ± 7.2
Terrestrial and reactor $\bar{\nu}$'s	2.3 ± 0.8
Neutrons from rock	≤ 1
²⁴ Na activation	8.4 ± 2.3
<i>n</i> from CNO <i>v</i> 's	0.3 ± 0.3
Total internal neutron background	$111.3^{+25.3}_{-24.9}$
Internal γ (fission, atmospheric ν)	5.2 ± 1.3
¹⁶ N decays	< 2.5 (68% CL)
External-source neutrons (from fit)	$84.5^{+34.5}_{-33.6}$
Cherenkov events from $\beta - \gamma$ decays	< 14.7 (68% CL)
"AV events"	< 5.4 (68% CL)

Measurement of CC, NC, ES events

 MC PDFs compared to data; extended unbinned ML fit used to estimate free parameters in fit.

3 (or 4) variables used to calculated likelihood PDFs:

- Radial position of reconstructed vertex
- □ Direction of electron w.r.t. Sun, $\cos \theta_{sun}$
- Event isotropy, β_{14} (PMT hit pattern)
- Electron kinetic energy (PMT hits) (optional)
- Free parameters in fit:
 - number of NC, CC, ES signal events
 - "external neutron" background events

Matter enhanced oscillations change ES and CC spectra

PDFs for signals and backgrounds

PDFs for signals and backgrounds To Sun Away from Sun Sun-electron direction Electron kinetic energy 140 Events per 500 keV Events per 0.05 wide bin (b) (c) 50 120 100 400 neutrons 300 60 200 neutrons 40 CC 100 20 0.8 10 11 13 -0.8 0.2 0.4 0.6 $\cos\theta_{sun}$ T_{eff} (MeV)

Flux results from fit

Units for ϕ are 10⁶ cm⁻² s⁻¹

 $\phi_{\rm CC}^{\rm SNO} = 1.59^{+0.08}_{-0.07} (\text{stat})^{+0.06}_{-0.08} (\text{syst})$ Energy spectrum $\phi_{\rm FS}^{\rm SNO} = 2.21^{+0.31}_{-0.26}(\text{stat}) \pm 0.10 \text{ (syst)}$ of ⁸B v's unconstrained (Energy not used in fit) $\phi_{\rm NIC}^{\rm SNO} = 5.21 \pm 0.27 \, (\text{stat}) \pm 0.38 \, (\text{syst})$

Standard Solar Model (Bahcall, Pinsonneault 2004)

 $\phi_{\rm BP04} = 5.82 \pm 1.34$

Energy spectrum

Systematic uncertainties

Source	NC uncert.	CC uncert.	ES uncert.
	(%)	(%)	(%)
Energy scale	-3.7,+3.6	-1.0,+1.1	±1.8
Energy resolution	±1.2	± 0.1	± 0.3
Energy non-linearity	± 0.0	-0.0, +0.1	± 0.0
Radial accuracy	-3.0,+3.5	-2.6,+2.5	-2.6,+2.9
Vertex resolution	±0.2	±0.0	±0.2
Angular resolution	±0.2	±0.2	±2.4
Isotropy mean †	-3.4,+3.1	-3.4,+2.6	-0.9,+1.1
Isotropy resolution	±0.6	± 0.4	±0.2
Radial energy bias	-2.4,+1.9	±0.7	-1.3,+1.2
Vertex Z accuracy †	-0.2, +0.3	± 0.1	± 0.1
Internal background neutrons	-1.9,+1.8	± 0.0	± 0.0
Internal background γ 's	± 0.1	±0.1	± 0.0
Neutron capture	-2.5,+2.7	± 0.0	± 0.0
Cherenkov backgrounds	-1.1,+0.0	-1.1, +0.0	± 0.0
"AV events"	-0.4, +0.0	-0.4, +0.0	± 0.0
Total experimental uncertainty	-7.3,+7.2	-4.6,+3.8	-4.3,+4.5
Cross section [13]	±1.1	±1.2	±0.5

Comparison to previous results and SSM (BP2000)

More precise salt results confirm D_2O results.

Interpretation of salt flux results: neutrino oscillation parameters

Interpretation of salt flux results: neutrino oscillation parameters

 1-D projections of oscillation parameters give marginal uncertainties on tan²θ and Δm².

$$θ = 32.5^{+1.7}$$
-1.6 degrees
Maximal mixing ($θ = 45$ degrees
excluded at 5.4 σ.

 $\Delta m^2 = (7.1^{+1.0}_{-0.3}) \times 10^{-5} \, eV^2$

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D_2O + salt
- Non-solar neutrino results
- SNO's future
- Summary

Recent non-solar v SNO results

Nucleon Decay

- "Invisible" decay of n and p (e.g. N → 3 v) from ¹⁶O produces γ-ray of 6→7 MeV.
- In SNO, γ -ray of 6 \rightarrow 7 MeV looks like *n*-capture.
- Compare *n*-capture rates in SNO Phases 1 and 2 (different *n*-efficiences) to set limit on τ_{inv} of *p* and *n*.

 τ_{inv}^{p} > 2.1 × 10²⁹ years, 90% CL

 $\tau_{inv}{}^{\it n}$ > 1.9 \times 10²⁹ years, 90% CL

$\overline{v_e}$ search

- Solar v_e might convert to $\overline{v_e}$ via Spin Flavour Precession or v_e decay.
- Look for 2- or 3-fold coincidences from

 $v_e + d \rightarrow n + n + e^+$

- 2 candidate coincidences (one 2fold, one 3-fold) in Phase 1.
- 1.68^{+0.93}-0.45 background expected (mainly v_{atm}).

 $Prob(v_e \rightarrow \overline{v_e}) < 0.81\%, 90\% CL$

Road map to talk...

- Introduction to SNO
- Previous solar neutrino results with D₂O
- Most recent solar neutrino result with D_2O + salt
- Non-solar neutrino results
- SNO's future
- Summary

Future of SNO: ³He counters

 Detect neutrons from NC interactions via

 $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$

- ³He-filled proportional tubes detect recoiling p and ³H.
- 40 ³He-filled proportional tubes in 1m grid (398 m total length).
- $\sigma(n + {}^{3}\text{He}) = 10^{7} \sigma(n + {}^{2}\text{H})$
- Event-by-event identification of NC interactions (no correlation with CC rate like in earlier phases).

Advantage of ³He counters

	Correlation Coefficient			
	D ₂ O	Salt	³ He	
CC,NC	-0.950	-0.521	~0	
NC,ES	-0.297	-0.064	~0	
CC,ES	-0.208	-0.156	~ -0.2	

- Reduction in anti-correlation between NC and CC will help to reduce uncertainty in CC/NC ratio.
- Smaller uncertainty in CC/NC ratio means smaller uncertainty in tan²θ.

Installation of ³He counters complete!

Summary

- SNO has completed data-taking for first two phases (D₂O and D₂O+Salt).
- Results from first two phases give convincing evidence of solar neutrino oscillation (first direct evidence of v_e oscillation).
 - > v_e has non-zero mass.
- Solar Neutrino Problem resolved after 30+ years (SSM correct!).
- Searches for "invisible" nucleon decay and electron anti-neutrinos have set stringent new limits.
- Last phase with ³He proportional counters has begun.

August 4, 2004

University of Sussex

Oxford University Rutherford Laboratory

SNO Collaboration

Carleton University Laurentian University Queen's University TRIUMF University of British Columbia University of Guelph

Brookhaven National Laboratory

Lawrence Berkeley National Laboratory

Los Alamos National Laboratory

University of Pennsylvania University of Texas at Austin

References

- SNO detector details: Nucl.Instrum.Meth.A449:172-207,2000, nucl-ex/9910016
- CC flux in D2O: Phys.Rev.Lett.87:071301,2001, nucl-ex/0106015
- NC flux in D2O: Phys.Rev.Lett.89:011301,2002, nucl-ex/0204008
- Night-Day Asymmetry in D2O: Phys.Rev.Lett.89:011302,2002, nucl-ex/0204009
- NC in in D2O+Salt: Phys.Rev.Lett.92:181301,2004, nucl-ex/0309004
- Nucleon Decay: Phys.Rev.Lett.92:102004,2004, hep-ex/0310030
- Anti-neutrino Search: Submitted to Phys. Rev. D, hep-ex/0407029