Neutrino Physics at MiniBooNE

Sam Zeller Columbia University SLAC Summer Institute 2004

1. Motivation

- LSND signal

2. Overview

- experimental setup
- first neutrino results
- updated sensitivity

Motivation: Three Signal Regions

3 v 's allows only 2 indep values of Δm^2 : $\Delta m^2_{21} + \Delta m^2_{32} = \Delta m^2_{31} \Delta m_{12}^2$ 3 distinct oscillation signals with $\Delta m^2_{sol} + \Delta m^2_{atm} \neq \Delta m^2_{LSND}$

- one of the experimental measurements is wrong (or one or more are not seeing v oscillations)
 - additional sterile v involved in the oscillation (>3 neutrinos gives 3 independent ∆m² scales)
 - or CPT is not a good symmetry (yields different mass scales for v, v)

 $v_{\mu} = v_{\tau}$

Motivation: the LSND Result

Church hm² [eV²/c⁴] observed 3.8 σ excess of \overline{v}_e in \overline{v}_{μ} beam SND evidence for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ oscillations et al., PRD LSND/KARMEN 10 analysis leaves $87.9 \pm 22.4 \pm 6.0$ excess KARMEN2 large allowed region $P(v_{\mu} \rightarrow v_{e}) = (0.264 \pm 0.067 \pm 0.045) \%$ compatible with . 66 NOMAD both experiments MiniBooNE 013001 * unconfirmed by other experiments but not excluded \rightarrow Bugey (2002) Beam Excess 17.5 Beam Excess To check LSND want: $p(\bar{v}_{\mu} \rightarrow \bar{v}_{\mu}, e^{+})n$ 15 p(v₀.e⁺)n 12.5 * same L/E, but ... fit to * higher statistics oscillation 10 hypothesis 7.5 * different systematics 5 * different signal signature beam-off and v 2.5 & backgrounds backgrounds 0 → MiniBooNE 1.2 0.4 0.6 0.8 1 1.4 L/E, (meters/MeV) hat definitive test excess consistent w/ oscillations search for $v_{\mu} \rightarrow v_{e}$ oscillations

Sam Zeller, SSI 2004, Aug. 3, 2004

ioint

MiniBooNE Collaboration

12 institutions, ~75 collaborators

University of Alabama: Y.Liu, I.Stancu Bucknell University: S. Koutsoliotas University of Cincinnati: E.A.Hawker, R.Johnson, J.L.Raaf University of Colorado: T.Hart, R.H.Nelson, M.Wilking, **F D Zimmerman** Columbia University: A.A.Aquilar-Arevalo, L.Bugel, J.M.Conrad, J.Link, J.Monroe, D.Shmitz, M.H.Shaevitz, M.Sorel, G.P.Zeller Embry Riddle Aeronautical University: D.Smith Fermi National Accelerator Laboratory: L.Bartoszek, C.Bhat, S.J.Brice, B.C.Brown, D.A.Finley, R.Ford, F.G.Garcia, P.Kasper, T.Kobilarcik, A.Malensek, W.Marsh, P.Martin, F.Mills, C.Moore, P.Nienaber, E.Prebys, A.D.Russell, P.Spentzouris, R.Stefanski, T.Williams Indiana University: D.Cox, A.Green, T.Katori, H.Meyer, R.Tayloe Los Alamos National Laboratory: G.T.Garvey, C.Green, W.C.Louis, G.McGregor, S.McKenney, G.B.Mills, H.Ray, V.Sandberg, B.Sapp, R.Schirato, R.VandeWater, N.L.Walbridge, D.H.White Louisiana State University: R.Imlay, B.Metcalf, S.Oeudraogo, M.Sung, M.O.Wascko University of Michigan: J.Cao, Y.Liu, B.P.Roe, H.J.Yang Princeton University: A.O.Bazarko, P.D.Meyers, R.B.Patterson, F.C.Shoemaker, H.A.Tanaka designed a beamline & detector optimized for this direct search ...

technically the most impressive component of MiniBooNE

Sam Zeller, SSI 2004, Aug. 3, 2004

FNAL Booster Performance

 typically delivers (3-4) x 10¹⁶ p/hr, now (6-8) x 10¹⁶ p/hr due to recent Booster improvements

• collected 3.5 x 10^{20} POT, ~370,000 v events

Sam Zeller, SSI 2004, Aug. 3, 2004

MiniBooNE Detector

- 12m diameter tank -
- 800 tons ultra-pure mineral oil
 v interactions in oil produce:
 - prompt ring of Cerenkov lightdelayed isotropic scintillation light
- 1280 8" phototubes in interior signal region

 240 8" phototubes in outer veto region (> 99% veto efficiency)

Neutrino Events

no high level analysis needed to see v events over background

beam arrives in a 1.6 µs window

- clear beam excess with no selection
 N_{VETO}<6 eliminates cosmic muons
- N_{TANK}>200 removes Michel electrons (μ decay)

simple cuts reduce non-beam background to ~1/1000

Sam Zeller, SSI 2004, Aug. 3, 2004

On the Path to Oscillation Results

- MiniBooNE $v_{\mu} \rightarrow v_{e}$ appearance search is a blind analysis
- still in process of calibrating & understanding our detector, neutrino beam, and refining event reconstruction
- based on current understanding of these \rightarrow 1st neutrino data
 - CC QE $\leftarrow v_{\mu}$ disappearance analysis, v flux
 - NC π^0 \leftarrow important background to $v_{\mu} \rightarrow v_{e}$

 not only are these physics samples specifically important for MiniBooNE, but ...

Neutrino Physics at ~1 GeV there is a lot of interesting physics on the path to oscillation results ...

MiniBooNE data will help improve our understanding of low energy v interactions

- imperative to ensure success of future v osc exps
- MiniBooNE statistics will exceed any other exp in this energy range
- these analyses are interesting in their own right

Low Energy v_µ Cross Sections

(1) charged current quasi-elastic (QE)

- highest statistics sample in previous bubble chamber data is ~2500 events

(2) neutral current π^0 events

р

Ζ π^0 p - no NC π^0 data

below ~2 GeV

(3) neutral current elastic scattering

this situation is changing with new high statistics data from K2K and MiniBooNE

Sam Zeller, SSI 2004, Aug. 3, 2004

v_u CC Quasi-Elastic Events

high statistics ~80,000 QE events now

measured dists agree well with expectations \rightarrow

v_µ CC Quasi-Elastic Events

 $\mathbf{v}_{\mu} \stackrel{\mathbf{n}}{\longrightarrow} \stackrel{\mathbf{\mu}}{\mu} \stackrel{\mathbf{p}}{p}$ $\mathbf{Q}^{2} = \mathbf{m}_{\mu}^{2} - 2\mathbf{E}_{\nu}(\mathbf{E}_{\mu} - \mathbf{p}_{\mu}\mathbf{cos}\theta_{\mu})$

- nuclear effects depend strongly on Q², so low Q² region provides information on modeling of nuclear effects in carbon
- interesting roll-over in data not tracked by Monte Carlo; also seen in K2K near detector data
 - has received a lot of attention recently
 - points to a common model deficiency?

NC Coherent π⁰ Production

understanding rate & kinematics of π^0 production important because background to $v_{\mu} \rightarrow v_{e}$ search

 π^0 angular distribution sensitive to mode of production

- ~ 80% resonant π^0 (Δ)
- ~ 20% **coherent** π^0 production
 - scatter off entire nucleus
 - forward scattered π (low Q²)
- no coherent π data below 2 GeV
 competing models differ by large factors
- important to understand how strongly coherent production contributes to overall NC π^0 rate at low E with MiniBooNE & K2K near detector data

NC Elastic Scattering

$$\nu_{\mu} p \rightarrow \nu_{\mu} p$$

reconstruct proton E from scintillation light

* 81% purity* 68% efficiency

- low energy events (< 200 MeV)
- sensitive to optical model (useful for studying scintillation properties of oil & low energy response of detector)
- Measure Δs (component of p spin carried by s quark)

Monte Carlo models data well down to ~60 tank hits = 150 MeV proton KE

CC π^+ Events

- newest ν sample
 large σ → ~1/2 rate of CC QE
- identify with 2 Michel electrons
- 85% pure selection of CC π^+
- use to study kinematics dists (Q², etc.) and coherent π production contributions

no previously published data on heavy targets at ~1 GeV

Updated MiniBooNE Sensitivity

detailed re-evaluation of ultimate sensitivity MiniBooNE can achieve

contains our current best knowledge updated from MiniBooNE proposal

4-5 σ coverage of LSND 90% CL region with 1x10²¹ POT

to definitively exclude LSND in the event that MiniBooNE does not see a signal, we need 1x10²¹ POT

Sam Zeller, SSI 2004, Aug. 3, 2004

Conclusions

MiniBooNE will confirm/refute LSND evidence for v oscillations

- confirmation would have dramatic implications for neutrino physics!

collected 3.5 x 10²⁰ POT to date

- detector and beamline functioning well
- accumulating data at rate of ~1,000 v events/day
 - 370,000 neutrino interactions recorded thus far

• currently:

- working to improve our understanding of beam & detector
- first results on QE, NC π^0 , NC elastic samples (CC π^+ soon)
 - already have > order of magnitude more data than previous bubble chamber based measurements
 - part of larger effort to gain a better understanding of low E
 v interactions (important input to v osc experiments)

outlook on anticipated oscillation results:

- v_u disappearance: expect results later this year
- $v_{\mu} \rightarrow v_{e}$ plan is to "open the box" sometime in 2005

Backup Slides

Neutrino Event Fractions

MiniBooNE flux-averaged

- 40% QE
- 25% CC π⁺
- 16% NC elastic
- 8% NC π⁰
- 4% CC π⁰
- 2% NC π⁺
- 2% NC π⁻
- 1% DIS

MiniBooNE'<E_v> ~ 700 MeV

MiniBooNE QE Data

 $2ME_{\mu} - m_{\mu}^2$ $\mathsf{E}_{v}^{\mathsf{QE}}$ $2(M-E_{\mu}+p_{\mu}\cos\Theta_{\mu})$

Laser Calibration

laser system is main tool for understanding PMT response

Laser flask system:

laser light (397 and 438 nm)
sent to 1 of 4 Ludox filled flasks (scatter light)

corrected time distribution for old tubes in laser events

Cosmic vs. Beam Michels

cross-check on using Michel electrons from cosmic ray µ's for calibration

 ← comparison between Michel electrons from cosmic rays (line) and beam interactions (points)

Updated MiniBooNE Sensitivity

 $\nu_{\mu} \rightarrow \nu_{e}$

Converting to an allowed region...

shows 3σ allowed region from a joint MiniBooNE/LSND analysis

1x10²¹ POT: lack of overlap / shows two experiments are inconsistent

5x10²⁰ POT: allowed region is larger and overlaps LSND

LSND Coverage

Sam Zeller, SSI 2004, Aug. 3, 2004

Differentiating High vs. Low ∆m²

with $1x10^{21}$ POT, can clearly separate a high from low Δm^2 signal (however, two measurement regions overlap with $5x10^{20}$ POT)

Electron Neutrino Events

numbers are for 1x10²¹ POT

important backgrounds include:

- beam v_e (33%)
- π⁰ mis-ID (27%)
- μ mis-ID (13%)

signal events:

- 30% are ν_e signal (for average LSND Δm² and sin²2θ)
- expected to differ
 by ~20% between
 Δm² = 0.4 →1 eV²

Updated MiniBooNE Sensitivity

$$v_{\mu} \rightarrow v_{s}$$
 oscillation search:

sensitivity to v_{μ} disappearance through shape of E_v distribution

estimated 90% CL coverage of low Δm^2 3+1 allowed regions from combined fit to all SBL experiments (with 1x10²¹ POT)

NC Elastic Scattering Events

events with only 1 subevent, Thits < 150, Vhits <6

Coherent Pion Production

- * coherently scatter off entire nucleus rather than its constituents
- * distinct kinematics:
 - negligible E transfer to target (low Q²)
 - forward scattered π
- * largely a v specific process as dominated by the axial current
 - no e⁻ scattering analogue
 exists to constrain this process

 $\nu_{\mu} A \rightarrow \nu_{\mu} A \pi^{0}$ \leftarrow NC $\nu_{\mu} A \rightarrow \mu^{-} A \pi^{+}$ ← CC

Coherent Pion Production

CC Coherent Pion Production Cross Section

of course, there is much more coherent data at higher energy

Effect of Pauli Suppression

NUANCE-predicted Pauli suppression (QE event sample)

Sam Zeller, SSI 2004, Aug. 3, 2004

Effect of Non-Dipole Vector Form Factors on QE Kinematics

Q² distribution of QE events

P.E. Bosted, Phys. Rev, C51, 409 (1995)

Sam Zeller, SSI 2004, Aug. 3, 2004

Beam Performance to MiniBooNE

POT per Horn Pulse

Largest week:	4.66	E12
Latest week:	4.5	E12

Horn Rate

(for time periods with beam) Largest week: 4.13 Hz Latest week: 3.94 Hz

Beam Uptime Fraction		
(fraction of time with beam)		
Largest week:	96.7 %	
Latest week:	80.3 %	

Neutrinos/POT Stable Over Time

Several Calibration Sources

have calibration sources spanning wide range of energies

Michel electrons prod from μ decay: provide E calibration at low energy (50 MeV), good monitor of light transmission, electron PID

 π^{0} mass peak: energy scale & resolution at medium energy (135 MeV), reconstruction

cosmic ray μ + tracker + cubes: energy scale & resolution at high energy (100-800 MeV), cross-checks track reconstruction

16000

10000

8000 6000 15%

E res

at

53 MeV

Energy (MeV)

