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OUTLINE

* The universe of coalescing Massive Black Hole
binaries produces a stochastic spectrum of
Gravitational Radiation at nanoHertz frequencies.

» Highly magnetized, rapidly rotating neutron stars
— pulsars — provide ultra-stable, celestial clocks.

 The MBH stochastic spectrum of gravitational
radiation can be detected in “short-wave” limit
with a Pulsar Timing Array — a nanoHertz GW
telescope.
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Connections to Other Lectures

Tues: Gravitational Radiation, A. Buonanno
Tues: Gravity Wave Interferometers, G. Gonzalez
Tues: LISA, S. Larson

Wed: GR Tests with Pulsars, I. Stairs

Thu/Fri: Black Holes, S. Hughes

Thu: Role of Massive BHs 1n Structure Formation, T. D1
Matteo

Fri: Observations of Black Holes, A. Fabian
Fri: Massive Black Hole 1n the Galactic Center, E. Quataert
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Massive Black Holes
(E. Quataert, Fr1)

10 light days . Sagittarius A* — Black Hole
with mass of 4 million Suns
(M,) in the center of our Milky
Way galaxy.

« NGC 4258 — mass of 30
million M, similar to many
nearby galaxies.

* Quasars and “Active”
Galaxies — jets formed by
poorly understood processes;
masses up to a few billion M..

2003 Summer School, SLAC 5



Massive Black Hole in Galaxy M84 (A. Fabian, Thu)

Red = Radio “Jet” Emissio White = Radio &
Optical Emisson
from near MBH

Blue = Optical Galaxy Emission

Radio Galaxy 3C272.1 = MB4 = NGC43574 copyright (¢) NEAQO 1998
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1-10 Billion yrs: merger mania --

growth of current galaxies

0.1-1 Billion yrs: first
small galaxies form
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The Big
Bang... and
the Growth

of Structures
(T. D1

Matteo, Thu)




Galaxy Mergers =2 Binary
Massive Black Holes

3C75: Prelude to a massive Black Hole Binary?

B iigiey 1 1 1

Optical image of nuclei VLA Radio image of two
of two galaxies jets, and cores
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Many galaxies contain
Massive Black Holes.

All galaxies grow by
mergers.

When two galaxies with
MBHSs merge, the two
holes will sink to a
common center.

Compact Massive
Black Hole binaries
are inevitable!
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Gravitational Radiation (A. Buonanno, Tues)

* Masses distort surrounding fabric
of space.

a 0 * Accelerating masses radiate
® /. X | x  “distortions”, or “ripples”, in the
fabric of space with
T\' AP dimensionless amplitude, h(x,t).

AMP

* | This is gravitational radiation,

: which propagates away at speed
of light.

S0 0 e A Binary MBH ten billion llght

Y AMP

X years away with orbit of Sy will
produce a distortion of space by
just 0.0000000000000001 (16 zeroes!).
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Model Universe of MBHs

Ingredients:

Binary GW formulation (Peters & Matthews, 1965)
Galaxy mergers & MBH assembly vs redshift
MBH demographics in galaxies

Galactic dynamics & the “final parsec problem”

Cosmological parameters relating distance, redshift, volume

= Stochastic Background of MBH Binary GWs

(n.b., “Foreground” in case of primordial background)
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Binary MBH GW Spectrum

Merger rate + Mass function + GWs:
— Nz f M, M,) df = ¢,0,R(z)C[Q, z] M f5°dfif
MBH <

Mass fn Merger rate Cosmology GW Timescale

h2(f) =fldz dM, dM, h*(z,M) N(z, f, M, M.))
— <(j\/l /108M®)5/3> (f/yr‘l)"% Ih

Stochastic (mjan-square)

(see also Phinney 2002) MZ(M1M2)3/5/(M1_|_M2)1/5

I = J‘R(Z) dz

n.b., integral separates: p(M) 57 I(z) R, EG)1 +z)4/3
12
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Characteristic Strain [h_/107"]
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Begelman, Blandford & Rees (1980)

Rajagopal & Romani (1994)
Jaffe & Backer (2003)

~One Number: Amplitude !!
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Recent Updates

“"Wyithe & Loeb (0211556)

oGlobal merger tree model

"Enoki et al (0404389)

oFrom Halos --> Galaxies (baryons)

sSesana et al (0401543, 0409255)

aSome explicit MBH binary/galaxy dynamics,
estimated 0.1 nHz cutoff

" Penn State Mtg: eccentric early history?
http://cgwp.gravity.psu.edu/events/PulsarTiming/program.shtml
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LIGO & LISA

(G. Gonzalez, Tue; S.

Larson, Tue)
 LIGO — Laser
Interferometer Gravity-
Wave Observatory seeks
ripples from coalescing
binary neutron stars and
other systems:

milliseconds time scale
(kiloHertz).

 LISA — Laser
Interferometer Space Array
seeks ripples from final
stages of coalescing binary
MBHs and other systems:
minutes time scale

(mllllHertZ) 2003 Summer School, SLAC 15
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Pulsars (I. Stairs, Wed)

« Rapidly rotating, highly magnetized
neutron-rich stars.

* Neutron star ( at center) has a
mass of the Sun and a radius of 10 km --
could fit within the ring road around the
Washington (and if placed there, the entire
federal bureaucracy would disappear in
milliseconds!).

* “Closed” dipole field (pink/ )
extends to 100 km 1n the fastest spinning
pulsars, and to 500,000 km in the slowest
and rotates rigidly with star.

e The radio beam ( ) is driven by a
voltage generated by the spinning field in
conducting medium -- analogous to the
spinning conductor 1n a fixed field
common to most electric generators.
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Pulsar Timing — Observations (1.S., Wed)
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« Faint signals are detected against
background noise.

* Need wide bandwidth & long
integration on large telescopes.

« Low level of interference is
increasingly important.
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Pulsar Timing —

power (arbitrary)
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sa W Pulsar Timing — Time

[1] The pulse arrival time at the telescope
1s referenced through the GPS System
(left) to the USNO master clock ensemble
in Wash., DC (below).
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[2] USNO time is itself

referenced via GPS to a single

International Atomic Time.

And then the relativistic

effects from the moving Earth

are removed to approximate a

clock at rest in the center of

the solar system. 2003 Summer School, SLAC




Pulsar Timing - Ephemeris
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Pulsar Timing - Analysis (1.S., Wed)

* Model building

Spin: phase, period, slowing down rate
Astrometric parameters: sky position, motion, parallax
» Orbital parameters (if in binary system): period, separation, phase, ..

* Residuals, R = Observations — Model

* Is model complete? Are residuals consistent with
measurement errors? Or 1s “something” more

needed?
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Ephemeris Errors (D. Nice)

Arecibo data from PSR
J1713+0747 analyzed using

_Jﬂ tﬁh{d’]ﬂ ‘ﬁ{ ﬂ{ Hé _ latest DE 405 solar system

0
|

ephemeris; Splaver et al.
(2004).
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=

I
o
|

1998 1999 EDDU EDOI EDDE EODB 2004
Year

PSR J1713+0747 analyzed using
previous-generation DE 200 solar

fﬁ dy system ephemeris.
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DM (pc cm ™)
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Interstellar Plasma “Weather”

Ramachandran et al. (2005)

i column density of electrons: DM = | n (1) dl
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Pulsar Timing Array — B1937+21

Timing noise? Interstellar weather?
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Pulsar Timing Array — 1713+0747

_ Splaver et al. (2004)
| Arecibo data; no
1 second derivative.

{ Timing noise?
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Periodogram Analysis — PSR B1855+09
(Lommen et al. 2005)
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®
Gravity Wave Source: GraVlty

MBH Binary Pulsar 2

. ¥ Wave
. Detection

Pulsar 1
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Hellings - 1

The path of the radio signal from the pulsar to the Earth 1s
a null path, so

dt* —ds* =0
S L]
= dt’ =(ny; +h;)dx'dx! = ds’ [Hhij ‘? d; j
s ds
Approximate j Jf ~ j P J- h dx' dxj
and integrate U ds dS

(=s5+— §§]jh ds =5 +— A“][ l-j(e)—H,-j(P)}

where  H;(f) = j y; (1)dt
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Hellings - 2

So let’s get an observable that is proportional to the wave

d;M) _l§z§f{hy [t—(1+0-9)s] @

Gravitational waves are proportional to the time
derivative of pulsar arrival time residuals.

gry pulsar in every direction has correlated timing
noise due to this term. This allows a weighted correlation

analysis to optimally use data from multiple pulsars.
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Characteristic Strain [h_/107"]
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Pulsar Timing Array --Two Basic
All-Sky Analysis Techniques

> B (@)Y (0, ¢)e“dw 1 T
Lm C(r1,72) = — | R(t,71)R(t,72)dt
1 JO

R(t,7(0,¢)) Y, (0, p)e™ dtd

*N.b., clock error has monopole signature; ephemeris error has dipole
signature; gravitational wave has >= quadrupole signature.
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Summary

Massive Black Holes (MBHs) exist in galaxies.
Galaxy mergers leads to binary MBHs.
MBH binaries produce Gravitational Radiation.

LIGO/LISA are future detectors of gravitational
waves, but...we might get there first with the
Pulsar Timing Array GW telescope probe of the
nanoHertz spectrum!
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