Black Holes at Accelerators

Bryan Webber, SSI05

- Black hole production
- Measuring the Planck scale
- Black hole decay

- Event simulation & model uncertainties
- Measuring black hole mass
- Determining the number of extra dimensions

Black hole production

Parton-level cross section:

$$\hat{\sigma}(\hat{s}=M_{BH}^2)=F_n\pi r_S^2$$

 $r_S =$ Schwarzschild radius in 4+n dimensions:

$$r_{S} = \frac{1}{\sqrt{\pi}M_{PL}} \left[\frac{8\Gamma\left(\frac{n+3}{2}\right)M_{BH}}{(n+2)M_{PL}} \right]^{\frac{1}{n+1}}$$

- $F_n =$ form factor of order unity (hoop conjecture)
- Usually set Planck scale $M_{PL} = I \text{ TeV}$ in this study (Dimopoulos-Landsberg $M_{PL} \equiv [G_{(4+n)}]^{-(n+2)}$)

BH formation factor (1)

$$b_{max} = 2r_h = 2r_s \left[1 + a_*^2\right]^{-\frac{1}{n+1}}$$
$$a_* = \frac{(n+2)J}{2r_h M_{BH}}, \quad J \simeq b M_{BH}/2$$
$$\hat{\sigma} = F_n \pi r_S^2 \simeq \pi b_{max}^2$$

$$\Rightarrow F_n \simeq 4 \left[1 + \left(\frac{n+2}{2} \right)^2 \right]^{-\frac{2}{n+1}} \quad \text{("geometric")}$$

BH cross section vs Planck mass

Little sensitivity to n
 Measuring σ and M_{BH} gives M_{PL}

BH cross sections at LHC

Topology		Total Cross Section (fb)	
5 TeV black hole	n = 2	62,000	
	n = 4	37,000	
	n = 6	34,000	
8 TeV black hole	n = 2	580	
	n = 4	310	
	n = 6	270	
10 TeV black hole	n = 2	6.7	
	n = 4	3.4	
	n = 6	2.9	

→ Several 5 TeV BH per minute at LHC!

Black hole decay (I)

- Balding phase
 - loses `hair' and multipole moments, mainly by gravitational radiation
- Spin-down phase
 - Ioses angular momentum, mainly by Hawking radiation
- Schwarzschild phase
 - Ioses mass by Hawking radiation, temperature increases
- Planck phase
 - mass and/or temperature reach Planck scale: remnant = ??

Black hole decay (2)

We assume Schwarzschild phase is dominant

all types of SM particles emitted with Hawking spectrum

$$\frac{dN}{dE} \propto \frac{\gamma E^2}{(e^{E/T_H} \mp 1)T_H^{n+6}}$$

Hawking temperature

$$T_{H} = \frac{n+1}{4\pi r_{BH}} \propto (M_{BH})^{-\frac{1}{n+1}}$$

Y is (4+n)-dimensional grey-body factor

Integrated Hawking flux

n	$r_{\rm h}F^{(0)}$	$r_{\rm h} F^{(1/2)}$	$r_{\rm h}F^{(1)}$	$r_{\rm h}F^{tot}$
0	0.00133	0.000486	0.000148	0.0526
1	0.00631	0.00439	0.00283	0.489
2	0.0173	0.0134	0.0119	1.56
3	0.0364	0.0283	0.0301	3.41
4	0.0655	0.0499	0.0596	6.18
5	0.106	0.0789	0.102	9.98
6	0.160	0.116	0.159	14.9
7	0.229	0.163	0.231	21.1

N.B. $r_{\rm h} F^{tot} \gg 1$ at large n

Transit time \gg time between emissions

Decay no longer quasi-stationary at large n

Black hole lifetime

	$ au M_{ m BH}$			
п	$M_{\rm BH} = 5M_{\rm PL}$	$M_{\rm BH} = 10 M_{\rm PL}$		
0	47500	761000		
1	202	1610		
2	23.3	148		
3	6.60	37.4		
4	2.77	14.6		
5	1.43	7.23		
6	0.846	4.12		
7	0.544	2.59		

 $(M_{
m BH} = 5 \ {
m TeV} \Rightarrow M_{
m BH}^{-1} \sim 10^{-28} \ {
m s})$ N.B. $au M_{
m BH} \sim 1$ at large n Black hole no longer well-defined?

Spin-down phase

Few results available for spinning BH

Power spectrum for scalar emission on brane (n=1)

CM Harris & P Kanti, hep-th/0503010

HERWIG Event Generator

- Most important SM & MSSM processes at LO
 - spin correlations included
 - ➡ parton showers at leading log (LL)
 - no showering from SUSY particles
- MC@NLO provides some SM processes at NLO
 - see S Frixione & BW, hep-ph/0506182 & refs therein
- Interface to CHARYBDIS black hole generator

Main CHARYBDIS parameters

Name	Description	Values	Default
TOTDIM	Total dimension (n+4)	6-11	6
GTSCA	Use scale (I/rs) not M _{BH}	logical	.FALSE.
TIMVAR	Use time-dependent T _H	logical	.TRUE.
MSSDEC	Include t,W,Z(2), h(3) decay	I-3	3
GRYBDY	Include grey-body factors	logical	.TRUE.
KINCUT	Use kinematic cutoff	logical	.FALSE.
NBODY	Multiplicity from remnant	2-5	2

Exploring Higher Dimensional Black Holes at the Large Hadron Collider

C.M. Harris[†], M.J. Palmer[†], M.A. Parker[†], P. Richardson[‡], A. Sabetfakhri[†] and B.R. Webber[†]

[†] Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK.

[‡] Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, UK.

hep-ph/0411022, JHEP05(2005)053; see also CM Harris, PhD thesis, hep-ph/0502005; CM Harris et al (CHARYBDIS event generator) hep-ph/0307035, JHEP08(2003)033

earlier work: SB Giddings & S Thomas, hep-ph/0106219; S Dimopoulos & G Landsberg, hep-ph/0106295

Missing transverse energy

 \rightarrow Typically larger $\not \! E_T$ than SM or even MSSM

Measuring black hole masses

$$\Rightarrow \Delta M_{BH}/M_{BH} \sim 4\%$$

Effect of energy cutoff E $< M_{BH}/2$

Energy distribution of primary emissions vs M_{BH}

+ Cutoff affects spectrum at low mass and/or high n

Combined measurement of M_{PL} and n

 $\Rightarrow \Delta M_{PL}/M_{PL} \sim 15\%$, $\Delta n \sim 0.75$

Conclusions

- Large cross section if Planck mass ~ I TeV
- Clear signature, with large $\not\!\!E_T$
- But BH mass measurement needs small ∉_T
- BH decay not well understood: early phases, time variation, spectrum cutoff, Planck-scale remnant
- Measuring n difficult but may be possible