

What's so interesting about double beta decay? Carter Hall University of Maryland

Neutrinos are the only electrically neutral fermions

Dirac and Majorana neutrinos

Dirac fermion: particle is charged, so $f \neq \overline{f}$ (e-, μ -, τ -, quarks). A Dirac neutrino carries lepton number:

$$v: L = +1, \overline{v}: L = -1$$

Majorana fermion: particle carries no charge, so $f = \overline{f}$

A Majorana neutrino cannot carry lepton number.

Does the neutrino carry lepton number? Is the neutrino its own antiparticle?

Charge properties are closely related to mass

Neutrinos may have Dirac masses, Majorana masses, or both. But the Standard Model Higgs only generates Dirac terms.

See-Saw mechanism predicts:

Light Majorana neutrinos and Heavy GUT scale neutrinos (possible source of Leptogenesis)

But

Many models exist for both Dirac and Majorana neutrinos, it's up to the experimentalists to provide guidance.

Don't we already know that $\nu \neq \overline{\nu}$ **?**

 $\overline{v}_e p \rightarrow e^+ n$

Kamioka Liquid Scintillator Anti Neutrino Detector

Don't we already know that $\nu \neq \overline{\nu}$ **?** A typical neutrino scattering experiment:

"Easy" explanation: v_{μ} carries a charge, "lepton number". Lepton number is conserved in the detector, so only μ - is produced.

Don't we already know that $V \neq \overline{V}$? A typical neutrino scattering experiment:

• parity violation in the detector allows the v_L to couple ONLY to μ - (and not μ +) in the final state.

Is Lepton number carried by the neutrino? We can't tell because it is obscured by 100% parity violation.

Imagine that parity were conserved

AND neutrinos did not carry lepton number

Imagine that parity were conserved

AND <u>neutrinos carry lepton number</u>

The absence of μ+ in the detector would confirm that lepton number is conserved, in a parity-conserving world.
In our world, the lack of μ+ tells us nothing about lepton number.

- Parity violation implies that v_R should create μ + in the detector.
- But L conservation forbids this, because this v_R carries L = +1 (while μ + has L = -1).
- In other words, this v_R has no weak interactions! (sterile neutrino)

The appearance of μ + in the detector would prove that v is Majorana.

Fermilab can create the neutrino beam

It can't be done(?!)

Severe chiral suppression!

- amplitude for μ + is suppressed by $\epsilon \sim 10^{-9}$ relative to μ -
- cross section suppressed by $\epsilon^2 \sim 10^{-18}$
- collect data at ~100 events/second \rightarrow need a billion years!!!
- Cannot allow any fake μ + in 10¹⁸ events

Use nuclear physics instead:

Use nuclear physics instead:

Neutrinoless Double Beta Decay ($\beta\beta0\nu$)

Forbidden if neutrino mass is Dirac only

we can fight it with Avagadro's number

The equivalent HEP process is $e^-e^- \rightarrow W^-W^-$

If TeV scale Majorana neutrinos exist, this process could be used to discover them.

For the light neutrinos that we know and love, the rate is far too small.

"Neutrino mass mechanism" for double beta decay

Neutrinoless Double Beta Decay ($\beta\beta0\nu$): N \rightarrow N'e⁻e⁻

Many types of new physics lead to $\beta\beta0\nu$

Right handed weak currents, leptoquarks, supersymmetry, ect.,

Does this spoil neutrino physics interpretations of $\beta\beta0\nu$?

Black box theorem guarantees that bb0n always implies Majorana v's

If we see $\beta\beta0\nu$, we know that Majorana neutrinos exist!

v_e is a mixture of several mass states:

$$v_e = U_{e1}v_1 + U_{e2}v_2 + U_{e3}v_3$$
 small

Neutrino oscillation experiments measure the Δm 's, but not the absolute masses

Two caveats to $\beta\beta0\nu$ as a mass measurement:

we must have a reliable calculation of the nuclear matrix element
the neutrino mass mechanism must dominate the decay

What $\beta\beta0\nu$ can tell us about the neutrino mass scale

Figure from Strumia & Vissani, Nucl. Phys. B 726 294 (2005)

Another way to measure the neutrino mass: Tritium beta decay $({}^{3}H \rightarrow {}^{3}He \ e^{-}v_{e})$

The electron energy spectrum should be slightly distorted due to the energy required to create the neutrino rest mass. Current best limit: $m(v_e) < 2.2 \text{ eV}$ (Mainz & Troisk) ₃₀

KATRIN: a new tritium neutrino mass experiment under construction in Karlsruhe, Germany

Expected $m(v_e)$ sensitivity: 0.2 eV.

ββ0v and Tritium experiments are complementary:

 $\beta\beta0\nu$ measures:

$$\left|\left\langle m(v_e)\right\rangle\right|^2 = \left|\sum_{i} U_e^2 m_i e^{i\alpha_i}\right|^2$$

coherent sum

Tritium measures:

$$m^{2}(v_{e}) = \sum_{i} \left| U_{e} \right|_{i}^{2} m_{i}^{2}$$

incoherent sum

To prove neutrinos are Majorana, we need to see a $\beta\beta0\nu$ signal.

To prove neutrinos are Dirac, we need a tritium signal AND show that $\beta\beta0\nu$ is absent.

Choosing a double beta decay source isotope:

 $N(Z,A) \rightarrow N(Z+2,A)e^{-}e^{-}$: daughter nucleus must have a smaller mass than the parent for the decay to occur. 33

To extract the neutrino mass from the bb0n half-life, we need to know the nuclear matrix element

The success of any nuclear structure calculation depends on the choice of the mean-field basis and the residual interaction!

6

From F. Simkovic, Neutrino 2010

LSSM: nuclear shell model QRPA: quasi-particle random phase approximation

From F. Simkovic, Neutrino 2010