Solar Neutrinos II: New Physics

- Helioseismology
- Matter-enhanced neutrino oscillations
- SNO and Super-Kamiokande
$\mathrm{Cl} / \mathrm{Ga} /$ Kamioka measured the three major solar v fluxes and found they were difficult to reconcile with the SSM

Castellani et al.

Hata et al.
(and Heeger and Robertson)

- Under the assumption that the experiments were measuring EC line sources and continuous β-decay sources with allowed shapes

$$
\begin{gathered}
\phi(p p) \sim 9.9 \phi^{\mathrm{SSM}}(p p) \\
\phi\left({ }^{7} \mathrm{Be}\right) \sim 0 \\
\phi\left({ }^{8} \mathrm{~B}\right) \sim 0.43 \phi^{\mathrm{SSM}}\left({ }^{8} \mathrm{~B}\right)
\end{gathered}
$$

- Steady-state models where the fluxes are largely controlled by the average temperature of the core cannot produce this pattern

$$
\begin{gathered}
\frac{\phi\left({ }^{8} \mathrm{~B}\right)}{\phi(\mathrm{pp})} \sim T^{23} \ll \frac{\phi^{\mathrm{SSM}}\left({ }^{8} \mathrm{~B}\right)}{\phi^{\mathrm{SSM}}(\mathrm{pp})} \Rightarrow T<T^{\mathrm{SSM}} \text { cooler Sun } \\
\frac{\phi\left({ }^{7} \mathrm{Be}\right)}{\phi\left({ }^{8} \mathrm{~B}\right)} \sim T^{-12} \ll \frac{\phi^{\mathrm{SSM}}\left({ }^{7} \mathrm{Be}\right)}{\phi^{\mathrm{SSM}}\left({ }^{8} \mathrm{~B}\right)} \Rightarrow T>T^{\mathrm{SSM}} \text { hotter Sun }
\end{gathered}
$$

so the pattern is contradictory

In parallel, a second precise probe of the solar interior was being developed: helioseismology, the measurement and analysis of Doppler shifts of photospheric absorption lines. Amplitudes $\sim 30 \mathrm{~m}$ and velocities $\sim 0.1 \mathrm{~m} / \mathrm{s}$.

Turbulence within Sun's convective zone acts as a random driver of sound waves propagating through the gas

Specific frequencies are enhanced as standing waves -- normal modes whose frequencies depend on solar physics
$\mathrm{n}=\mathrm{l} 4 \mathrm{l}=20 \mathrm{~m}=16 \mathrm{p}$-mode (acoustic)

How does this probe the SSM? For a spherical star

$$
p(r), \rho(r), T(r), s(r), \phi_{\text {gravity }}(r), \epsilon_{\text {nuclear energy }}(r)
$$

Introduce adiabatic indices describing power-law behavior of p, T with ρ

$$
\Gamma_{1} \equiv\left(\frac{\partial \log p}{\partial \log \rho}\right)_{s} \quad \Gamma_{3}-1 \equiv\left(\frac{\partial \log T}{\partial \log \rho}\right)_{s}
$$

Define a total derivative

$$
\frac{D}{D t} \equiv \frac{\partial}{\partial t}+\vec{v} \cdot \vec{\nabla}
$$

Write down the equations for
motion: $\quad \rho \frac{D \vec{v}}{D t}=-\vec{\nabla} p-\rho \vec{\nabla} \phi \quad$ continuity: $\quad \frac{D \rho}{D t}+\rho \vec{\nabla} \cdot \vec{v}=0$
gravitational potential: $\quad \vec{\nabla}^{2} \phi=4 \pi G \rho$
energy conservation: $\quad \frac{1}{p} \frac{D p}{D t}-\Gamma_{1} \frac{1}{\rho} \frac{D \rho}{D t}=\frac{\Gamma_{3}-1}{p}(\rho \epsilon-\vec{\nabla} \cdot \vec{F})$
(internal energy corrected for any work done due to volume change)
where \vec{F} is the energy flux. \quad Static interior solution \Rightarrow SSM

- Now look for a variation around the SSM solution

$$
\rho(\vec{r}, t)=\rho_{0}(r)+\rho^{\prime}(\vec{r}, t)
$$

where displacements are small, $\delta(\vec{r}), \quad v=\frac{\partial}{\partial t} \delta(\vec{r})$

- Plug into the stellar evolution equations (see Balantekin,WH nucl-th9903038)
\diamond try normal mode solution $\rho^{\prime}(\vec{r}, t) \sim \rho^{\prime}(r) Y_{l m}(\theta, \phi) e^{-i \omega t}$
\diamond introduce the adiabatic sound speed $\mathrm{c}, p=\frac{1}{\Gamma_{1}} \rho c^{2}$
\diamond and the field $\Psi(r)=c^{2} \sqrt{\rho} \vec{\nabla} \cdot \delta \vec{r}$
and one finds that the equations reduce to a Schroedinger-like form

$$
\frac{d^{2} \Psi(r)}{d r^{2}}+\frac{1}{c^{2}}[\underbrace{\omega^{2}-\omega_{\mathrm{co}}^{2}-\frac{l(l+1) c^{2}}{r^{2}}\left(1-\frac{N^{2}}{\omega^{2}} 4<0\right. \text { damped }}_{\omega_{\text {eff }}>0 \text { propagating }}] \Psi \Psi(r) \sim 0
$$

an eigenvalue problem, governed by two frequencies
the bouyancy frequency $\quad N(r)=\sqrt{\frac{G m(r)}{r}\left(\frac{1}{\Gamma_{1}} \frac{d \log p}{d r}-\frac{d \log \rho}{d r}\right)}$
vanishes in the convective zone, \sim constant in radiative zone
acoustic cutoff frequency $\quad \omega_{\mathrm{co}}=\frac{c}{2 H} \sqrt{1-2 \frac{d H}{d r}}$ where $H^{-1}=-\frac{1}{\rho} \frac{d \rho}{d r}$
propagating modes are those where one does not "see" a change in the density over a wavelength
p-modes: surface modes, $\quad N=0, \quad \omega>\omega_{c o}, \quad \omega>\frac{l(l+1) c^{2}}{r^{2}}$
different modes propagate to different depths depending on I
the turning-point defined by

$$
\frac{\omega^{2}-\omega_{\mathrm{co}}^{2}}{l(l+1)}=\frac{c(r)^{2}}{r^{2}}
$$

so large-l acoustic modes (p -modes) less penetrating

similar arguments for the gravity modes, those that propagate in the radiative zone, controlled by the bouyancy frequency ($\omega<N$ guarantees propagation at sufficiently small r): difficult to see, because the surface is in the forbidden region
sound speed $c(r)$ derived from mode inversion, compared to SSM

Bahcall: agreement at 0.2% over 80% of Sun a more severe test than the vs

The neutrino flux discrepancy -- the fact it was not compatible with any adjustment of T in steady-state solar models --combined with the SSM success in helioseismology made a "new-physics" solution more credible

Another development that changed viewpoints was a theoretical step, the recognition that solar matter could enhance V oscillations

Vacuum flavor oscillations: mass and weak eigenstates

flavor states	$\begin{aligned} & \mid \nu_{e}> \\ & \mid \nu_{\mu}> \end{aligned}$	\leftrightarrow	$\begin{aligned} & \mid \nu_{L}> \\ & \mid \nu_{H}> \end{aligned}$	$\begin{gathered} m_{L} \\ m_{H} \end{gathered}$	$\begin{aligned} & \text { mass } \\ & \text { states } \end{aligned}$

Noncoincident bases \Rightarrow oscillations down stream:

$$
\begin{aligned}
\mid v_{e}> & =\cos \theta\left|\nu_{L}>+\sin \theta\right| \nu_{H}> \\
\mid v_{\mu}> & =-\sin \theta\left|\nu_{L}>+\cos \theta\right| \nu_{H}> \\
\mid \nu_{e}^{k}> & =\mid \nu^{k}(x=0, t=0)>\quad E^{2}=k^{2}+m_{i}^{2} \\
\mid \nu^{k}(x \sim c t, t)> & =e^{i k x}\left[e^{-i E_{L} t} \cos \theta\left|\nu_{L}>+e^{-i E_{H} t} \sin \theta\right| \nu_{H}>\right] \\
\left|<\nu_{\mu}\right| \nu^{k}(t)>\left.\right|^{2} & =\sin ^{2} 2 \theta \sin ^{2}\left(\frac{\delta m^{2}}{4 E} t\right), \quad \delta m^{2}=m_{H}^{2}-m_{L}^{2}
\end{aligned}
$$

ν_{μ} appearance downstream \Leftrightarrow vacuum oscillations
(some cheating here: wave packets)

Can slightly generalize this

$$
|\nu(0)\rangle \rightarrow a_{e}(0)\left|\nu_{e}\right\rangle+a_{\mu}(0)\left|\nu_{\mu}\right\rangle
$$

yielding

$$
i \frac{d}{d x}\binom{a_{e}(x)}{a_{\mu}(x)}=\frac{1}{4 E}\left(\begin{array}{cc}
-\delta m^{2} \cos 2 \theta & \delta m^{2} \sin 2 \theta \\
\delta m^{2} \sin 2 \theta & \delta m^{2} \cos 2 \theta \\
\text { vacuum } \mathrm{m}^{2} \text { matrix }
\end{array}\right)\binom{a_{e}(x)}{a_{\mu}(x)}
$$

solar matter generates a flavor asymmetry

- modifies forward scattering amplitude
- explicitly dependent on solar electron density
- makes the electron neutrino heavier at high density

$$
m_{\nu_{e}}^{2}=4 E \sqrt{2} G_{F} \rho_{e}(x)
$$

inserting this into mass matrix generates the 2-flavor MSW equation
$i \frac{d}{d x}\binom{a_{e}(x)}{a_{\mu}(x)}=\frac{1}{4 E}\left(\begin{array}{cc}-\delta m^{2} \cos 2 \theta+4 E \sqrt{2} G_{F} \rho_{e}(x) & \delta m^{2} \sin 2 \theta \\ \delta m^{2} \sin 2 \theta & \delta m^{2} \cos 2 \theta\end{array}\right)\binom{a_{e}(x)}{a_{\mu}(x)}$
or equivalently

$$
i \frac{d}{d x}\binom{a_{e}(x)}{a_{\mu}(x)}=\frac{1}{4 E}\left(\begin{array}{cc}
-\delta m^{2} \cos 2 \theta+2 E \sqrt{2} G_{F} \rho_{e}(x) & \delta m^{2} \sin 2 \theta \\
\delta m^{2} \sin 2 \theta & -2 E \sqrt{2} G_{F} \rho_{e}(x)+\delta m^{2} \cos 2 \theta
\end{array}\right)\binom{a_{e}(x)}{a_{\mu}(x)}
$$

the $\mathrm{m}_{\mathrm{v}}{ }^{2}$ matrix's diagonal elements vanish at a critical density

$$
\rho_{c}: \quad \delta m^{2} \cos 2 \theta \equiv 2 E \sqrt{2} G_{F} \rho_{c}
$$

Alternately this in terms of local mass eigenstates

$$
\begin{aligned}
& |\nu(x)\rangle=a_{H}(x)\left|\nu_{H}(x)\right\rangle+a_{L}(x)\left|\nu_{L}(x)\right\rangle \\
& i \frac{d}{d x}\binom{a_{H}(x)}{a_{L}(x)}=\frac{1}{4 E}\left[\begin{array}{cc}
m_{H}^{2}(x) & i \alpha(x) \\
-i \alpha(x) & m_{L}^{2}(x)
\end{array}\right]\binom{a_{H}(x)}{a_{L}(x)}
\end{aligned}
$$

observe:

- mass splittings small at $\rho \mathrm{c}$: avoided level crossing
- $\nu_{H}(x) \sim \nu_{e}$ at high density
- if vacuum θ small, $\nu_{H}(0) \sim \nu_{\mu}$ in vacuum
thus there is a local mixing angle $\theta(\mathrm{x})$ that rotates from $\sim \pi / 2 \rightarrow \theta_{v}$ as $\rho_{e}(x)$ goes from $\infty \rightarrow 0$

- it must be that $\alpha(x) \sim \frac{d \rho}{d x}$
- if derivative gentle (change in density small over one local oscillation length) we can ignore: matrix then diagonal, easy to integrate

$$
\Rightarrow P_{\nu_{e}}^{\text {adiabatic }}=\frac{1}{2}+\frac{1}{2} \cos 2 \theta_{v} \cos 2 \theta_{i} \rightarrow 0 \text { if } \theta_{v} \sim 0, \theta_{i} \sim \pi / 2
$$

- most adiabatic behavior is near the crossing point: small splitting \Rightarrow large local oscillation length \Rightarrow can "see" density gradient
- derivative at ρ_{c} governs nonadiabatic behavior (Landau Zener)

$$
\begin{gathered}
P_{\nu_{e}}^{L Z}=\frac{1}{2}+\frac{1}{2} \cos 2 \theta_{v} \cos 2 \theta_{i}\left(1-2 P_{h o p}\right) \\
\text { so } \rightarrow 1 \text { if } \theta_{v} \sim 0, \theta_{i} \sim \pi / 2, P_{h o p} \sim 1
\end{gathered}
$$

we can do this problem analytically

$$
P_{\text {hop }}^{\text {linear }}=e^{-\pi \gamma_{c} / 2} \quad \gamma_{c}=\frac{\sin ^{2} 2 \theta}{\cos 2 \theta} \frac{\delta m^{2}}{2 E} \frac{1}{\left|\frac{1}{\rho_{c}} \frac{d \rho}{d x}\right|}
$$

$Y_{c} \gg \mid \Leftrightarrow$ adiabatic, so strong flavor conversion
$Y_{c} \ll \| \Leftrightarrow$ nonadiabatic, little flavor conversion
so two conditions for strong flavor conversion: sufficient density to create a level crossing adiabatic crossing of that critical density

MSW mechanism is about passing through a level crossing

Mathematica HW problem

a) vacuum oscillations $\theta=15^{\circ}$
R from - 20 to +20
R in units of $\frac{4 E \cos 2 \theta}{\delta m^{2} \sin ^{2} 2 \theta}$
b) matter oscillations
add $\rho_{e}(R) \propto 1-\frac{2}{\pi} \arctan a R$
normalize so that crossing occurs at $\mathrm{R}=0$
note $\rho_{e}(R) \rightarrow 0$ as $R \rightarrow \infty$

So ν_{e} is produced as a heavy eigenstate, then propagates toward the vacuum, where it is the light eigenstate

Small angle solution

distinctive energy-dependent suppression

Neutrino oscillations had been one of the early suggestions for solving the solar neutrino puzzle (Pontecorvo) -but the apparent need for nearly complete mixing of three neutrino species to produce the needed factor-of-three reduction in the Cl counting rate seemed a stretch. The known quark mixing angles are small.

The MSW mechanism provided a means for suppressing the flux even if the mixing angle were small;
and the energy-dependent reductions
 that the data seemed to demand.

By the mid-1980s planning was underway for two next-generation experiments to resolve the solar neutrino puzzle, Super-Kamiokande and SNO

SK increase in fiducial volume (from 0.68 to 22 ktons) provided the potential to see spectrum distortions or day-night matter effects -- reconstructed from spectrum of scattered electrons in $\nu_{e}\left(\nu_{x}\right)+e \rightarrow \nu_{e}^{\prime}\left(\nu_{x}^{\prime}\right)+e^{\prime}$

SKI (1996 \rightarrow), SKII $(2002 \rightarrow)$, SKIII $(2006 \rightarrow)$, SKIV $(2008 \rightarrow)$

$$
\phi\left({ }^{8} \mathrm{~B}\right)=\left[2.38 \pm 0.05(\text { stat })_{-0.15}^{+0.16}(\mathrm{sys})\right] \cdot 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad \text { SKII }
$$

$$
\delta(\text { day } / \text { night })=-6.3 \pm 4.2(\text { stat }) \pm 3.7(\text { sys }) \%
$$

Ratio of SKII observed to SSM energy spectrum.
Purple: I σ level of energy-correlated systematic errors.

Phase	Energy response	Energy threshold
SK-I	6 p.e./MeV	5.0 MeV
SK-II	3 p.e./MeV	7.0 MeV
SK-III	6 p.e./MeV	$5.0 \mathrm{MeV} \rightarrow 4.5 \mathrm{MeV}$
SK-IV	6 p.e./MeV	4.0 MeV

H.Sekiya, Jul 30 ${ }^{\text {th }} 2008$, Philadelphia, ICHEP2008

Sudbury Neutrino Observatory

- Suggested by Herb Chen in mid-1980s: replacement of the ordinary water in a Cerenkov detector with heavy water
- Provides three complementary detection channels
reaction

1) $\nu_{x}+e \rightarrow \nu_{x}^{\prime}+e^{\prime}$
2) $\nu_{e}+D \rightarrow p+p+e^{\prime} \quad$ produced electron
3) $\quad \nu_{x}+D \rightarrow p+n+\nu_{x}^{\prime}$ produced neutron
I) isolated from the forward-peaking of the scattering: energy shared among outgoing leptons -- sensitive to $\nu_{e} s$, reduced sensitive to $\nu_{\mu, \tau} s$
4) detected by the scattered electron, hard spectrum with $E_{e} \sim E_{\nu}-1.44 \mathrm{MeV}$, as GT strength concentrated near threshold; angular distribution $1-1 / 3 \cos \theta$; only sensitive to $\nu_{e} s$
5) detected by capture of the produce neutron: total cross section measured; sensitive equal to νs of any flavor

- Detection of electrons weakly correlated with direction, and especial of neutrons, placed exception requirements on background reduction
\diamond cavity at exceptional depth of 2 kilometers to reduce muons
\diamond construction under cleanroom conditions: tiny quantities of dust in 12-story cavity would have produced neutrons above the expected solar rate, $8 /$ day
- Experiment proceeded in three phases, depending on the neutral current detection scheme
\diamond capture on deuterium $\mathrm{d}(\mathrm{n}, \gamma)$ producing a 6.25 MeV $\gamma \quad$ Phase I
\diamond capture on 2 tons of dissolved salt:
${ }^{35} \mathrm{Cl}(n, \gamma) \quad 8.6 \mathrm{MeV}$ energy release Phase II
\diamond capture in ${ }^{3} \mathrm{He}$ proportional counters
Phase III
- Recent low-energy re-analysis of Phases I and II, reaching to electron kinetic energies of 3.5 MeV

Figure 2: Flux of ${ }^{8} \mathrm{~B}$ solar neutrinos is divided into ν_{μ} / ν_{τ} and ν_{e} flavors by the SNO analysis. The diagonal bands show the total ${ }^{8} \mathrm{~B}$ flux as predicted by the SSM (dashed lines) and that measured with the NC reaction in SNO (solid band). The widths of these bands represent the $\pm 1 \sigma$ errors. The bands intersect in a single region for $\phi\left(\nu_{e}\right)$ and $\phi\left(\nu_{\mu} / \nu_{\tau}\right)$, indicating that the combined flux results are consistent with neutrino flavor transformation assuming no distortion in the ${ }^{8} \mathrm{~B}$ neutrino energy spectrum.

- SNO thus definitively resolved the solar neutrino problem
- The detector is dismantled, making space for SNO+, but the analysis continues. The best-fit combined-analysis two-flavor parameters are

$$
\begin{aligned}
\delta m_{12}^{2} & =7.59_{-0.21}^{+0.20} \times 10^{-5} \mathrm{eV}^{2} \\
\theta_{12} & =34.06_{-0.84}^{+1.16} \text { degrees }
\end{aligned}
$$

- The SSM was found to be consistent with the measurements

$$
\begin{aligned}
\phi\left({ }^{8} \mathrm{~B}\right)= & \left(5.046_{-0.152}^{+0.169}(\mathrm{stat})_{-0.123}^{+0.107}(\mathrm{syst})\right) \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& \text { BPS08(OP; GS) } 5.95 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& \text { BPS08(OP; AGS) } 4.72 \times 10^{6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

" 1 was called right after the[SNO] announcement was made by someone from the New York Times and asked how I felt. Without thinking I said `I feel like dancing I'm so happy.' ... It was like a person who had been sentenced for some heinous crime, and then a DNA test is made and it's found that he isn't guilty. That's exactly the way I felt." JNB

