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Outline

• Neutrino oscillation physics with T2K

Experimental challenges and how T2K approaches them:

• Getting enough data

• Making a suitable beam

• Flux prediction

• Cross sections

• Detector technology

• Sensitivities for planned run

• Will also show performance data from Near Detectors
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Neutrino oscillation physics

(Weak) flavour basis  ≠ Mass/propagation basis:

• Phase of each propagation 

state advances at different rate.

• Leads to transitions between flavour states when 

detected at a distance from production point.

[Oscillations conserve lepton no, so Majorana phases unobservable]
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(Weak) flavour basis  ≠ Mass/propagation basis:

Only oscillations
driven by the 

larger atmospheric 

∆m2 have developed
over T2K baseline. 

Oscillations visible when ∆m2 L/E ~ O(1): need E low and L large!

Neutrino oscillation physics
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Oscillation parameters

A common parameterisation is:

Which gives Uµ3 = s23c13 ≈ s23, and Ue3 = s13e
-iδ

T2K uses a beam of initially νµ and can 

identify events as originating from νµ
or νe interactions.  It can therefore 
probe the magnitude of elements Uµ3
(νµ disappearance) and Ue3 (νe

appearance)
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νµ disappearance channel

The νµ disappearance channel
is also sensitive to the mass2

splitting.

Has been measured by previous 
experiments, but T2K should 

achieve significantly better 
precision over its nominal run:

• 0.75MW primary beam, 5 nominal years (107s/year)

• [~5×1021 POT, proton momentum 30 GeV/c]
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The main goal of T2K is to 
measure/’improve limit on

the magnitude of’ Ue3

• Nominal sensitivity O(101) 

better than current limits.

• If Ue3 is measurable the number 

of event observed also depends on CP-violating phase

ν
e
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The T2K experiment

The Tokai to Kamioka experiment is a ‘long baseline’

experiment.  

• Distance from target to far detector (Super-K) is 295km.

Neutrino flux falls as 1/L2, so a large (massive) far detector 
is desirable: 

• Super-Kamiokande is BIG - 22.5 kilotonnes (fiducial) of 
water. 
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Super-Kamiokande IV

See talk by Hayato-san

• Water-Cherenkov detector

• Good muon/electron separation

Signal events are charged-current 

quasi-elastic interactions on 16O nuclei:

Energy resolution from kinematic reconstruction (CCQE):

CCQE events dominant at Eν~0.7GeV � Sets choice of Eν
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Event displays

Single ring event (muon-like) Two ring event

Pink diamond is drawn on the wall at intersection of line in 
the beam direction starting at the reconstructed vertex 
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The neutrino beam

Number 1 consideration: we need lots of neutrinos!

• Neutrino facility incorporated into new high-luminosity 
accelerator complex at J-PARC.

• Distance to Super-K is a good match for ideal energy 
regime (~1GeV).

• Conventional neutrino beam: Secondary pions* from 
proton beam focused by magnetic horns and allowed 

to decay into muons & muon-neutrinos*. 

– Design power 0.75MW

– Currently ~55kW (~double in next run)

• Graphite target in T2K phase 1 (may be upgraded)

• Focussing by 3 magnetic horns
*Mostly. Contamination

is ~ sub-percent
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N

Neutrino beam 

to Kamioka

30 GeV Main Ring

RCS: 3 GeV
synchrotron

Linac

Bird’s-eye photo in Jan ’08

Secondary 

beam

Target 

area

Near  

detector

(280m) pit

J-PARC facility (KEK/JAEA)
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Neutrino beamline

Target and horns(3), decay volume (110m)

Neutrino arc
(Super-conducting 
combined function 

magnets)

Final Focus

Beam dump &

muon monitors
50 100 m

•6(8) bunch fast 

extraction

• φφφφ 2.6 × 90 cm
Helium-cooled 

graphite target

•Horns at 250 (320)kA
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Hadron production & NA61

• Hadrons produced at a given 

momentum and angle 

• Horns focus a subset of these 

down the decay volume.

So neutrino flux depends on:

• Secondary beam geometry

• Hadron distribution off target

Modelling hadron production is 

hard: T2K will use data from 

NA61 (SHINE)

• Uses thin and T2K replica targets

31GeV/c p on T2K replica target

https://na61.web.cern.ch/na61/xc/index.html
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Off-axis beam is ideal for ννννe

appearance where NC 
feed-down is a major B/G.

T2K is the 1st experiment to use 
an off-axis (2.5o) design. 

The ‘off-axis trick’

Major background for νe channel is 
from higher energy events where 
some energy is unobserved. 

On-axis there is always a large ‘tail’�
of neutrinos up to high energy

� Off-axis, neutrino energy 
dependence on parent energy is 
not as strong.

� Nearly eliminates high-energy tail

� Neutrino peak is narrower 
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The on-axis detector

Off-axis configuration means you 
need to know the beam-
detector angle to high 
precision.

T2K goal is < 1 mrad (0.06 deg)

“On-axis” detector INGRID

designed to measure beam 
profile with high statistics.

7 + 7 modules in cross shape, 
central modules are on-axis

Alternating Iron/ScintX/ScintY
modules, 10cm thick iron 

planes to get plenty of νµ
interactions

... ...
hadronic
system

ν

µ
νννν
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INGRID technology

Active material of detector is plastic scintillator bars with 

WLS fibres in central channels to photosensors.

� Well proven & economical: Similar technology used by 

K2K, MINOS, MINERvA, SciBooNE…

T2K uses innovative readout: Multi-Pixel Photon Counters:

667 pixels, each acting as an 

avalanche photodiode in Gieger
mode.  

Pixels are read out by a

single anode � Charge 
is proportional to number 

of photons observed

1.3mm

5µm
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INGRID performance

First event
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Cross-sections and topology

As well as getting the flux right it is important to get understand 

the cross sections for neutrinos on oxygen.

T2K needs to understand exclusive  

channels:

• CC QE cross-section � events 
expected per neutrino

Also with regard to backgrounds:

• Non-QE processes where the 
additional final state particles are 
unobserved
� systematically low reconstructed 
energy.

• NC π0 events (� 2γ)can mimic νe

event if only one ring is resolved.

� major background for νe analysis

flux 

peak
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The off-axis detectors

P0D
Tracker

ECals

Yoke/SMRD
Magnet

coil

ND280

Cross-sections and event topology can 

be studied with the off-axis ND280 
detector.

• Detector is centred on the same 
direction as SK so sees a similar flux.

ND280 has two main target regions:

• Pi-0 Detector (P0D): optimised to 
study distribution of (NC) π0 events

• Tracker: Intended for detailed study 
of charged-particle final states: 
Better understanding of exclusive 

processes in the ~1GeV region νννν
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ND280 technology

The tracker section consists of two sub-systems: 

2 Fine-Grained Detectors (target mass) between 
3 Time-Projection Chambers (particle ID, momentum)

Surrounding the tracker and P0D are EM-Calorimeters, 
and the old UA1/NOMAD magnet (for momentum 
measurements: B ~ 0.2T). Interleaved in the yoke is the 

Side Muon Range Detector which helps identify muons.

Everything except the TPC is based on similar technology 

(plastic scintillator/WLS fibre/MPPC readout) to INGRID

• Small size of MPPCs is great benefit, both for space 

considerations and because of B-field immunity. 
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Beam νe and the tracker

Another major background is the 

intrinsic νe in the beam.

•ND280 needs to measure this.

Tracker section is very good for 

ννννe event identification:

•Electrons leave distinctive tracks 

in the TPCs.

�TPCs use microMEGAS
design (First large scale 
use of this technology)

Excellent PID via dE/dx �
measurements � unusual 
for a neutrino detector!

MC: νe/νµ flux ratio 
at Epeak is 0.43%

Resolution~ 0.1keV/cm @ 450MeV/c
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Example ND280 events

Interaction in P0D: View from (north) side Sand Muon & FGD interaction

Cosmic ray muonFGD interaction with backward track
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18

ND280 performance

Event rates as  function of beam 
exposure.

� At all levels of processing (activity,  
clustering,  reconstruction) we see 
proportionality to the number of 
protons delivered.

FGD activity in time with beam

Daily DsECal cluster rates

P0D reconstructed vertices
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ND280 is off-axis!

Plots showing contained vertices reconstructed in the 2 

‘Fiducial’ detectors.

Lines show (approximate) iso-contours of off-axis angle.

• Outer corner is roughly 20% further off-axis than inner 
corner.

����FGD

P0D����
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Super-K

prediction

T2K analysis strategy

ND280 

flux

T2K transfer

function

Cross 

sections

Super-K

response

NA61

data
Geometry

INGRID

data

Super-K

atmospheric

analysis

ND280

data

Flux    

predictions

Interaction 

models

ND280

data

External

data

ND280

response

Super-

Kamiokande

beam data

Oscillation 

measurements

Detector

simulation

Super-Kamiokande flux



2010/8/6 28

東海

神岡

Summary

T2K is the most recent in a succession of LBL neutrino 

oscillation experiments.

• These are complicated experiments, with many 

separate parts that must act in concert.

• Shown how each part (beam, near detectors, far 

detector) has a role, and must be designed to function 
together.

Timeline:

• 1999 – Initial suggestion (Nishikawa/Totsuka)

• 2001 – Proposal (hep-ex/0106019)

• 2004 – Official approval / T2K collaboration formed

• 2010 – Data taking begins!
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ν
e
appearance channel

If Ue3 is measurable the number
of events observed also 

depends on the CP-violation 

parameter, δ. 
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Exposure

• Protons delivered so far: 3.28×1019 (Jan-June)
• Continuous running at ~50kW level (up to 100kW in trials)

• Super-Kamiokande live fraction in excess of 99%
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Transfer function

Baseline methods:

• Near/Far flux ratio

[used by K2K]

• Matrix Method
[used by MINOS]

Development over T2K 

run period expected
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Pi-zero background

Isolated neutral pions from νµ-NC events:

Neutral pion � photon pair � 2 EM showers

• If the EM showers have same direction they mimic a 
single EM shower (electron signal)

µµµµ eππππ0
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Muon monitors

• Secondary/Primary beam intensity stable within 1%   
(reflects stability of targeting, horn focusing, etc)

• Well within our stability requirements for physics

34

Detector intrinsic resolution <1.5mm

0

-10

10

P
ro
fi
le
 c
e
n
te
r 
/c

m
M
u
(S
i)
 T
o
ta
l 
Q
/N

p

Jan Feb Mar Apr May

RMS/MEAN < 1% (whole period)

Jan Feb Mar Apr May



2010/8/6 35

東海

神岡

Unbiased event selection

For initial run, SK event selection was fixed in advance

• Possible because SK is a mature & well understood 
detector.

For ννννµµµµ disappearance analysis For ννννe appearance search

Timing coincident w/ beam time (+TOF)

Fully contained (No OD activity)

Vertex in fiducial volume (Vertex >2m from wall)

Evis > 30MeV Evis > 100MeV

no of rings =1

µ-like ring e-like ring

No decay electron

Inv. mass w/ forced-found 2nd ring 

< 105MeV

Eν
rec < 1250MeV


