THE UNIVERSITY OF

WARWICK

T2K: A long-baseline neutrino
oscillation experiment

-Phill Litchfield,
for the T2K collaboration

i B

2010/8/6



Outline

* Neutrino oscillation physics with T2K

Experimental challenges and how T2K approaches them:
e Getting enough data

e Making a suitable beam

e Flux prediction

e Cross sections

e Detector technology

e Sensitivities for planned run
* Will also show performance data from Near Detectors
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Neutrino oscillation physics

(Weak) flavour basis # Mass/propagation basis:

U, U, U,l(1T 0 0O
) =2 Usln) U=|U, U, Ugll0 e™ 0
| UT] UT2 UT3 O O e_IWQ
. A\ ~ J
e Phase of each propagation Maijorana phases

state advances at different rate.

e Leads to transitions between flavour states when
detected at a distance from production point.
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[Oscillations conserve lepton ne, so Majorana phases unobservable]
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Neutrino oscillation physics

(Weak) flavour basis # Mass/propagation basis:

vV, I
V. e
;v v, I
Only oscillations ®v. N
. ; n;,
driven by the = Az
Y
larger atmospheric
> I
Am? have developed | Tl
over 12K baseline. Vi V: I
Normal Hierarchy Inverted Hierarchy
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Oscillations visible when Am?L/E ~ O(1): need E low and L large!
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Oscillation parameters

12K uses a beam of initially v, and can

U U ( U ) identify events as originafing from v,
el e?2 e3d : :
== Orv, inferactions. It can therefore
U=\U, Us | Ui probe the magnitude of elements U ;;
L U, U,| [(v,disappearance)and Ug; (Ve
appearance)
A common parameterisation is: 5= SinG;
c,-j:cose,-j
1 0 O0}) ¢, O s,e™|c, s, O
U=|0 c,y S, 0 1 O ||-S, ¢, O
0 —s,, CuJl—s.e” 0 c, 0O 0 1

: . _ _ _ s
Which gives U ;3 = 553C13=S,3, And Ugz = $15€
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v, disappearance channel

MINQOS & Super-K preliminary @ Nu'10

Am?, L I e WINGS et 1 SuperKatn
— 1_ ¢ 2 N atm ~ ® MINOS best fit Super-K 90%
P, =1-=sIin"20,;sin  NOSem  — Sumrk UE s
o ===+ MINOS 68%
. = I
The v, disappearance channel o 25 P
is also sensitive to the mass? = | , | / (
oL G T2K nominal:
Splitfing. = 3.75MWx107s
Has been measured by previous — 2
experiments, but T2K should e e e s
ochigye signiﬁc;un’rly pe’r’rer 08 08 09 095
precision over its nominal run: sin“20

e 0.75MW primary beam, 5 nominal years (107s/year)
e [~5x102" POT, proton momentum 30 GeV/c]
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V, appearance channel

. : - LlAm? L
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The main goal of T2K is to

+O

sin’ 2 0., sensitivity

-
Q

90% CL 613 Sensmwty 750kW

Systematic Error Fraction

—

the magnitude of’ U | 12K Se“S'"V"Y o -

. o _ e3 : | |[Am?2 ~2.4x10°eV2[ | .

e Nominal sensitivity O(] O ) | sin2g,=0.5 8=0f |-

better than current limits. P e T T N N N 1
10 1

e If Uoz Is measurable the number

Exposure/(22.5kt x 1year)

of event observed also depends on CP-violating phase
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The T2K collaboration
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The T2K experiment

The Tokai to Kamioka experiment is a ‘long baseline’
experiment.

e Distance from target to far detector (Super-K) is 295km.

Neutrino flux falls as 1/L2, so a large (massive) far detector
Is desirable:

e Super-Kamiokande is BIG - 22.5 kilotonnes (fiducial) of
wafter.

TC"'gef

2010/8/6




Super-Kamiokande IV

See talk by Hayato-san
e Water-Cherenkov detector
e Good muon/electron separation

Signal gven’rg are chorged—curren’r ———
quasi-elastic interactions on O nuclei:

v, +N—{ +p

Energy resolution from kinematic reconstruction (CCQE):

mE, —m? /2
mN _EE +p€.py/Ey

E =

14

CCQE events dominant at £,~0.7GeV — Sets choice of E,,
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Event displays

Single ring event (muon-like)

Two ring event

Super-Kamiokande |V

T2K Beam Run 0 Spill 952106

Run 66831 Sub 410 Event 96851432
10-05-18:18:33:08

Inner: 2949 hits, 8031 pe
outer: 3 hits, 2 pe
Trigger: 0x80000007
D_wall: 709.7 cm

mu-like, p = 1024.6 Mev/c

Charge (pe)
>26.7
5-26.7

cor bk
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Super-Kamiokande IV

T2K Beam Run 0 Spill 384139

Run 66592 Sub 113 Event 26847061
10-03-20:04:35:42

ass = 122.7 Mev/c 2

Charge (pe)
>26.7
» 23.3-26.7

COo RN Wk
(SR
AT T DT

comNWR
[T R

500
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Pink diamond is drawn on the wall at infersection of line in
the beam direction starting at the reconstructed vertex
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The neutrino beam

Number 1 consideration: we need lots of neutrinos!

 Neutrino facillity incorporated into new high-luminosity
accelerator complex at J-PARC.

e Distance to Super-K is a good match for ideal energy
regime (~1GeV).

e Conventional neutrino beam: Secondary pions* from
proton beam focused by magnetic horns and allowed
to decay infto muons & muon-neutrinos®.

— Design power 0.756MW
— Currently ~55kW (~double in next run)

e Graphite target in T2K phase 1 (may be upgraded)

o i .
Focussing by 3 magnefic horns *Mostly. Contamination

IS ~ sub-percent
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Neutrino beamline

Beam dump &

muon Mmonitors - |

50 100|m

-
-

-.-------.-
== -
- -

'a-::% Ny N o
L e R Neutrino arc
E WA (Super-conducting
M\ combined function
" magnets)

» 6(8) bunch fast
exiraction

e 2.6 x90cm
Helium-cooled
graphite target

* Horns at 250 (320)kA

o0/ Target and horns(3), decay volume (110m)° y




Hadron production & NA61

| 8-p at production point of =* producing v, @ SK

 Hadrons produced at a given
momentum and angle

e Horns focus a subset of these
down the decay volume.

So nevutrino flux depends on:
e Secondary beam geometry
e Hadron distribution off target

)
e
IS

o

S W

w &
LLLLLLLELL L L)

Polar angle 6 (rad
o
[\*]
o

Modelling hadron production is
hard: T2K will use data from
NA61 (SHINE)

e Uses thin and T2K replica targets

https://naél.web.cern.ch/naél/xc/index.html

2010/8/6 15



The ‘off-axis trick’

Major background for v, channelis € [ 20
from higher energy events where ¢ r Off-axis 2.5°
some energy is unobserved. 21 Off-axis 3.0°

. . 1 . ] ><
On-axis there is always a large ‘tail’» 2 |
of neutrinos up to high energy 2
£ 1
O
Z L
O ...... | e e Sl S il
0 05 1 15 2 25 3 35 4
oftoAic bearn b, (GeV/c) Neutrino energy /GeV

4 Off-axis, neutrino energy . Off-axis beam is ideal for v,
dependence on parent energy is appearance where NC
not as strong. feed-down is a major B/G.

v Nearly eliminates high-energy tail | 1o is the 1t experiment to use
v Neutrino peak is narrower an off-axis (2.5°) design.
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The on-axis detector

2010/8/6

Off-axis configuration means you
need to know the beam-
detector angle to high
precision.

T2K goalis < 1 mrad (0.06 deg)

“On-axis” detector INGRID
designed to measure beam
profile with high statistics.

/ + 7 modules in cross shape,
central modules are on-axis

Alternating Iron/ScintX/ScintY
modules, 10cm thick iron
planes to gef plenty of v,
intferactions
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INGRID technology

Active material of detector is plastic scinfillator bars with
WLS fibres in central channels to photosensors.

v Well proven & economical: Similar technology used by
K2K, MINOS, MINERVA, SciBooNE...

T2K uses innovative readout: Multi-Pixel Photon Counters:

667 pixels, each acting as an
avalanche photodiode in Gieger
mode.

Pixels are read out by @
single anode — Charge
Is proportional to number
of photons observed

- | [
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INGRID performance

Nov. 22, 2009
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Cross-sections and topology

As well as getting the flux right it is important to get understand
the cross sections for neutrinos on oxygen.

f';gk T2K needs to understand exclusive
_ ¥ channels:
e CC QE cross-section — events
T — expected per neutrino
j 0.8
¢ * | Also with regard to backgrounds:
osp \ + H * Non-QE processes where the
: | 1 additional final state particles are
0.4} O BEBC (39)
: A } {1 ko unobserved
oal NS : b L systematically low reconstructed
' . ol energy.
= o NC TP evens (= 2y)can mimic v,
E (GeV)

event if only one ring is resolved.
- major background for v, analysis
2
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The off-axis detectors

Cross-sections and event topology can .
be studied with the off-axis ND280  qqne: | s kil
detector.

e Detectoris centred on the same
direction as SK so sees a similar flux.

ND280 has two main target regions:

e Pi-0 Detector (POD): optimised to
study distribution of (NC) ® events

e Tracker: Infended for detailed study
of charged-particle final states:
Better understanding of exclusive
processes in the ~1GeV region
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ND280 technology

The tracker section consists of two sub-systems:

2 Fine-Grained Detectors (target mass) between
3 Time-Projection Chambers (particle ID, momentum)

Surrounding the fracker and POD are EM-Calorimeters,
and the old UAT/NOMAD magnet (for momentum
measurements: B ~ 0.2T). Intferleaved in the yoke is the
Side Muon Range Detector which helps identify muons.

Everything except the TPC is based on similar fechnology
(plastic scintillator/WLS fibre/MPPC readout) to INGRID

e Small size of MPPCs is great benefit, both for space
considerations and because of B-field immunity.
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Beam v_ and the tracker

Another major background is the 510°
infrinsic v, in the beam. 1

e ND280 needs to measure this.

Tracker section is very good for
V. event identification:

e Electrons leave distinctive fracks
in the TPCs.
VARSI < TPCs use mIiCroMEGAS

design (First large scale
use of this technology)

Flux (/50 MeV/cm?/10%!

Excellent PID via dE/dx »
measurements = unusudl
for a neutrino detector!

MC:v /v, fluxratio
at E oo 15 0.43%

- ___‘______: ______________ V

.

2 2.5 3
Energy (GeV)

- —— muons
— electrons
—— pions

—— protons

v e b b b P b b L 1y
200 400 600 800 1000 1200 1400 1600 1800 2000
p (MeV/c)
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Example ND280 events

Event number : 1608 | Parllion = 63 | Run pumber; 2693 | Spill: 7206 | SubRun number:| NVALID!| Time = Fri 2010:02:405 01:57:45 JST | Eventnumber - 182111 | Partition - 63 | R\ - 4200/ Spilll- 0| SubRun number :80/| Time : Mon 2010-08-22/18:10:44 JST [Trigger: Be

POD — FGD2 - DSECAL

TPC1 TPC2 TPC3

Interaction in POD: View from (north) side

Event number: 82215 | Partition : 63]| Run number : 4200 | Spill : 0] SubRuninumber :19 | Time : Mon 20110-08-2209:04:26/JS [Trigger: Beam Spill

I

FGD interaction with backward track Cosmic ray muon

2010/8/6




ND280 performance
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FGD activity in time with beam
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Average rate = 0.306 events / 10'> POT
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POD reconstructed vertices
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Integrated 3D Vertices
]
[=]
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[=]

20000
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=°
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1000 2000 3000 4000 5000 6000 7000 8000
Integrated Protons @ CT5

15

x10

Event rates as function of beam

exposure.

v At all levels of processing (activity,
clustering, reconstruction) we see
proportionality to the number of

protons delivered.
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ND280 1s oft-axis!

g
3 -
!
100—
«FGD ™
50—
..... 0:_
............ o
Ll | Ll l.P.I.\.l-I..I.\.l Ll ‘ Ll | Ll 1 | -100:_
0 20 40 60 80 100 120 140 160 180
X[cm] POD > | ‘ 1 1 1 | I I | ‘ I | | 1 1 | ‘ | 1

-100 -50 0 50 100
X (cm)

Plots showing contained vertices reconstructed in the 2
‘Fiducial’ detectors.

Lines show (approximate) iso-contours of off-axis angle.

e Quter corner is roughly 20% further off-axis than inner
corner.
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T2K analysis strategy

INGRID
data
Flux Detector Super-

predictions simulation Kamiokande

:..................................-...-...-...-.....E beGm dG.I.O
Super-Kamiokande flux

ND280 T2K transferk Cross Super-K O Super-K
flux function [P sections response prediction

ND280 Interaction
esponse models
ND280

data
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Summary

T2K is the most recent in a succession of LBL neutrino
oscillation experiments.

e These are complicated experiments, with many
separate parts that must act in concert.

e Shown how each part (beam, near detectors, far
detector) has a role, and must be designed to function
together.

Timeline:

e 1999 — Initial suggestion (Nishikawa/Totsuka)

e 2001 — Proposal (hep-ex/0106019)

e 2004 - Official approval / T2K collaboration formed
e 2010 — Data taking begins!
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V, appearance channel

90% CL 0,, Sensitivity

o ?
o |Ocp
— 0=0
| — 8=m/2
S |—o6=n
| 8=-1/2

Normal Hierarchy |

Ao @ | e Z% WY
Amng ~ 8 _

Y A Y
P . =sIN“26,,5IN" 0, sin

AM?, L] 10

AMGim 4E

+0 —A”EO' sin29]3)><cos(6 +—Am3*mL) .

+0O

AN WS S S .~ S

|f U63 IS meqsurgble -I-he number : - é:: S NS |

of events observed also —F NN -t
depends on the CP-violation S N

parameter, o W R R Bl
10-3 10‘2 10—1
sin’ 2 0, sensitivity
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Exposure

410" __cmmmm _mm m-n SIS EEEEES GEm— g 10"
: total . proton#t per pulse J100kW. " ]
g o 3.5 mm} ——physics run L—' i 17 10"
% 3 1019_ NU beam tuning, study b _ 6 1013 g
> ] -
= : ] =)
o 25 10"} Is10® 2
L < L 5
e 210" 1410 s
L il | 2
i 1 13
g- 1510 : . —:3 10 2
: ' : o
§ 1 10195_ "- rm "2 1013 nh-
2 o TN - AN - -+ 11 10"
oL . = :0
1/17 (/28 552 | | 66 /1

Date
e Protons delivered so far: 3.28x10'? (Jan-June)
e Continuous running at ~50kW level (up to T00kW in trials)
e Super-Kamiokande live fraction in excess of 99%
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Transfer function

~
Baseline methods: =, | N
 Near/Far flux ratio E F‘““t SK .
sed by K2K ' Flux at ND280 '
[U y K2K] imﬂ_ ______________ b (ﬁggﬁ%h_ﬁd_W_SK,ﬂm
e Matrix Method -ETEUDD L . |
[used by MINOS]
10000
Development over T2K
run period expected sooo
ﬂﬂff.
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Pi-zero background

Isolated neutral pions from v -NC events:
Neutral pion = photon pair = 2 EM showers

e |f the EM showers have same direction they mimic @
single EM shower (electron signal)
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Muon monitors
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e Secondary/Primary beam intensity stable within 1%
(reflects stability of targeting, horn focusing, etc)
 Well within our stability requirements for physics
34
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Unbiased event selection

For initial run, SK event selection was fixed in advance

e Possible because SK is a mature & well understood
detector.

For v disappearance analysis For v, appearance search

Timing coincident w/ beam time (+TOF)
Fully contained (No OD activity)
Vertex in fiducial volume (Vertex >2m from wall)
E.i. > 30MeV E.. > 100MeV
ne of rings =1
u-like ring e-like ring
No decay electron

Inv. mass w/ forced-found 29 ring
< 105MeV

E e < 1250MeV
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