

Anatomy of Neutrino Luminosities

Three-Flavor Neutrino Luminosities and Mean Energies

When Micro and Macro Worlds Collide

⇒ Zeroth-order shell model (nucleons independent), electron capture on nuclei is blocked for N>40.

When Micro and Macro Worlds Collide

Shell Model Deployed: "Hybrid Model" [Langanke et al. Phys. Rev. Lett. 91, 241102 (2003)]

Multigroup Flux-Limited Diffusion

The Boltzmann equation contains the same information as an infinite hierarchy of equations for the angular "moments" of the neutrino distribution function:

$$\int d\mu \left[\frac{\partial f}{\partial t} = L[f] \right] \Rightarrow \frac{\partial \psi^0}{\partial t} = \dots \qquad \qquad \psi^0 = \frac{1}{2} \int d\mu f$$
$$\psi^1 = \frac{1}{2} \int d\mu \mu f$$
$$\int d\mu \mu \left[\frac{\partial f}{\partial t} = L[f] \right] \Rightarrow \frac{\partial \psi^1}{\partial t} = \dots \qquad \dots$$
$$\dots$$

Approximation:

- Truncate hierarchy at the level of the "zeroth" moment (neutrino energy density).
- Closure: Relate the first moment (momentum density/flux) to the energy density so as to satisfy known limits:

Multigroup Variable Eddington Factor/Tensor Method

The Boltzmann equation contains the same information as an infinite hierarchy of equations for the angular "moments" of the neutrino distribution function:

$$\int d\mu \left[\frac{\partial f}{\partial t} = L[f] \right] \Rightarrow \frac{\partial \psi^0}{\partial t} = \dots \qquad \qquad \psi^0 = \frac{1}{2} \int d\mu f$$
$$\psi^1 = \frac{1}{2} \int d\mu \mu f$$
$$\int d\mu \left[\frac{\partial f}{\partial t} = L[f] \right] \Rightarrow \frac{\partial \psi^1}{\partial t} = \dots \qquad \qquad \dots$$

Approximation:

...

- Truncate hierarchy at level of "first" moment (neutrino momentum density).
- Closure: Relate the second (and third) moments to the zeroth moment using "Eddington factors," which are the ratio of these higher moments to the zeroth moment.

Eddington factors can be computed at different levels of approximation:

- "Prescribed" closure (e.g., maximum entropy closure).
- Approximate Boltzmann solution.
- Exact Boltzmann solution.

Ongoing 2D Multi-Physics Supernova Models

Simulation Building Blocks

- *"RbR-Plus" MGFLD Neutrino Transport O*(v/c), *GR time dilation and redshift*, *GR aberration (in flux limiter)*
- ⇒ 2D PPM Hydrodynamics
 - *GR time dilation, effective gravitational potential, adaptive radial grid*
- Lattimer-Swesty EOS
 - 180 MeV (nuclear compressibility), 29.3 MeV (symmetry energy)
- Nuclear (Alpha) Network
 14 alpha nuclei between helium and zinc
- 2D Effective Gravitational Potential
 Marek et al. A&A, 445, 273 (2006)
- Neutrino Emissivities/Opacities
 - "Standard" + Elastic Scattering on Nucleons + Nucleon–Nucleon Bremsstrahlung

"Ray-by-Ray-Plus" Approximation

- Radial transport allowed.
- Lateral transport suppressed.
 - Buras et al. A&A, 447, 1049 (2003)

8/5/10

Bruenn et al., Journ. Phys. Conf. Ser. 180, 012018 (2009)

Impact of Energy Exchange in Neutrino Scattering on Nucleons

New Weak Interaction Physics and Its Ramifications:

⇒ Muon/tau neutrino elastic scattering on nucleons leads to heating of electron neutrinospheres.

Neutrino Luminosity: 1D vs. 2D

- Variations with angle due to highly nonspherical flow in postshock region, induced by convection and SASI.
- Variations are angle *and* time dependent.

SASI: A Case Study for 3D

Anatomy of a Mach Reflection

- Symmetry of Mach reflection broken in three dimensions.
- Internal shock (orthogonal to supernova shock) leads to two counter-rotating flows.

Ramifications...

SASI-induced counter rotating flows.

Inner flow capable of spinning up remnant NS to 50 ms periods, even beginning with spherically symmetric initial conditions.

Implications for

- \Rightarrow the growth of B fields?
- ⇒ the supernova mechanism?
- ⇒ supernova observables?

Ongoing 3D Multi-Physics Simulations

Simulation Building Blocks

- "RbR-Plus" MGFLD Neutrino Transport
 O(v/c), GR time dilation and redshift, GR aberration (in flux limiter)
- **3** *J PPM Hydrodynamics*
 - *GR time dilation, effective gravitational potential, adaptive radial grid*
- Lattimer-Swesty EOS
 - 180 MeV (nuclear compressibility), 29.3 MeV (symmetry energy)
- Nuclear (Alpha) Network
- 3D Effective Gravitational Potential
 Marek et al. A&A, 445, 273 (2006)
- Neutrino Emissivities/Opacities
 - "Standard" + Elastic Scattering on Nucleons + Nucleon–Nucleon Bremsstrahlung

Bruenn et al., Journ. Phys. Conf. Ser., in press (2009)

Resolution $304 \times 76 \times 152$ $\Rightarrow 11,552 \text{ processors}$ $576 \times 96 \times 192 \text{ (recently launched)}$ $\Rightarrow 18,432 \text{ processors}$ $512 \times 256 \times 512$ $\Rightarrow 131,072 \text{ processors}$

PREVIEWS OF COMING DISTRACTIONS

3D Models: Path Forward						
Neutrino Transport Approach	Code	GR	Network	Platform	Time Frame	Target
RbR MGFLD	CHIMERA	Approximate	Alpha, Full	2-20 PF	2010-2015	CCSNe
MGFLD	CHIMERA	Approximate	Alpha, Full	100 PF – 1 EF	2015-2020	CCSNe
MGVET	GenASiS	BSSN	Alpha, Full	100 PF – 1 EF	2015-2020	CCSNe, Hypernovae
Boltzmann	GenASiS	BSSN	Alpha, Full	> 10 EF	> 2020	CCSNe, Hypernovae