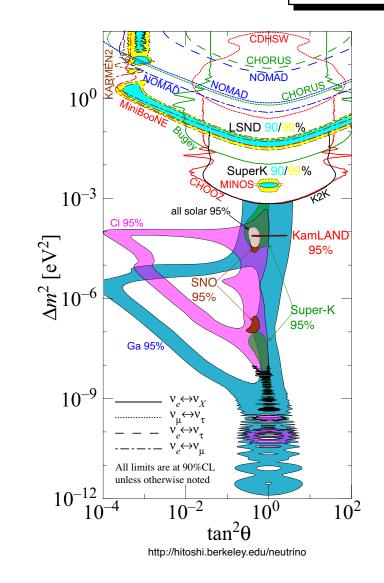
Neutrino Basics



- Neutrinos as a Probe
- Electroweak Interactions of Neutrinos
- Mass, Mixing, and Intrinsic Properties
- Neutrino Oscillations
- Models
- Outstanding Issues

Reference: The Standard Model and Beyond, CRC Press

Mass, Mixing, and Intrinsic Properties

• Weyl fermion

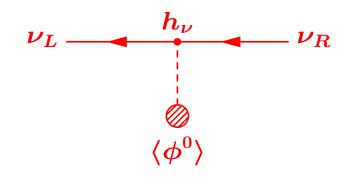
- Minimal (two-component) fermionic degree of freedom
- $\psi_L \leftrightarrow \psi_R^c$ by CP ($\psi_R^c \sim \psi_L^\dagger$)
- Active Neutrino (a.k.a. ordinary, doublet)
 - in SU(2) doublet with charged lepton ightarrow normal weak interactions
 - $u_L \leftrightarrow
 u_R^c$ by CP
- Sterile Neutrino (a.k.a. singlet, right-handed)
 - SU(2) singlet; no interactions except by mixing, Higgs, or BSM
 - $u_R \leftrightarrow
 u_L^c$ by CP
 - Almost always present: Are they light? Do they mix?

• Fermion Mass

- Transition between right and left Weyl spinors: $m\bar{\psi}_L\psi_R + m^*\bar{\psi}_R\psi_L \rightarrow m\left(\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L\right)$

($m \geq 0$ by $\psi_{L,R}$ phase changes)

- Dirac Mass
 - Connects two distinct Weyl spinors (usually active to sterile): $m_D \left(\bar{\nu}_L \nu_R + \bar{\nu}_R \nu_L \right) = m_D \bar{\nu}_D \nu_D$
 - Dirac field: $\nu_D \equiv \nu_L + \nu_R$
 - 4 components, $\Delta L=0$
 - $\Delta t_L^3 = \pm rac{1}{2}
 ightarrow {\sf Higgs doublet}$
 - Why small? (Large dimensions? Higherdimensional operators? String instantons?)



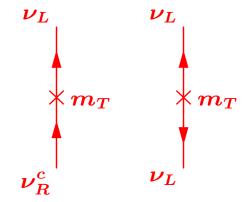
$$m_D=h_
u
u=\sqrt{2}h_
u\langle arphi^0
angle$$

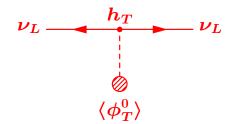
• Majorana Mass

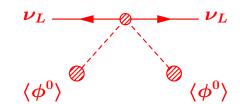
- Connects Weyl spinor with itself: $\frac{m_T}{2} \left(\bar{\nu}_L \nu_R^c + \bar{\nu}_R^c \nu_L \right) = \frac{m_T}{2} \bar{\nu}_M \nu_M \text{ (active)}$ $\frac{m_S}{2} \left(\bar{\nu}_L^c \nu_R + \bar{\nu}_R \nu_L^c \right) = \frac{m_S}{2} \bar{\nu}_{M_S} \nu_{M_S} \text{ (sterile)}$
- Majorana fields:

$$\nu_M \equiv \nu_L + \nu_R^c = \nu_M^c$$
$$\nu_{M_S} \equiv \nu_L^c + \nu_R = \nu_{M_S}^c$$

- 2 components, $\Delta L = \pm 2$, self-conjugate
- Active: $\Delta t_L^3 = \pm 1$ (triplet or higher-dimensional operator)
- Sterile: $\Delta t_L^3 = 0$ (singlet or bare mass)
- Phase of u_L or u_L^c fixed by $m_{T,S} \geq 0$

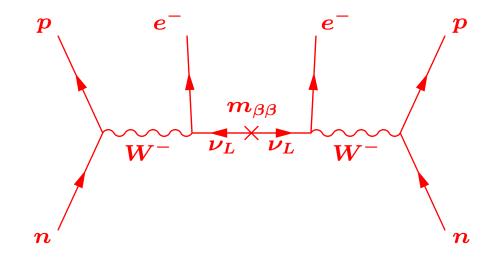






Neutrinoless Double Beta Decay $(\beta\beta_{0\nu})$

• $\Delta L = 2$: Majorana mass only $(m_{etaeta} \sim m_T)$



• Other mechanisms, e.g., R_P violation in supersymmetry

Mixed Models

• Can have simultaneous Majorana and Dirac mass terms

$$-\mathcal{L} = rac{1}{2} \underbrace{\left(egin{array}{cc} ar{
u}_L^0 & ar{
u}_L^{0c} \end{array}
ight)}_{ ext{weak eigenstates}} \left(egin{array}{cc} m_T & m_D \ m_D & m_S \end{array}
ight) \left(egin{array}{cc}
u_R^{0c} \
u_R^0 \end{array}
ight) + h.c.$$

 $egin{array}{lll} m_T: & |\Delta L|=2, & |\Delta t_L^3|=1 & ({
m Majorana}) \ m_D: & |\Delta L|=0, & |\Delta t_L^3|=rac{1}{2} & ({
m Dirac}) \ m_S: & |\Delta L|=2, & |\Delta t_L^3|=0 & ({
m Majorana}) \end{array}$

• Mass eigenvalues:

$$A_L^{
u\dagger} \underbrace{\left(egin{array}{ccc} m_T & m_D \ m_D & m_S \end{array}
ight)}_{M=M^T} A_R^
u = \left(egin{array}{ccc} m_1 & 0 \ 0 & m_2 \end{array}
ight)$$

• (Majorana) mass eigenstates: $u_{iM} =
u_{iL} +
u_{iR}^c =
u_{iM}^c, \quad i = 1, 2$

$$\left(egin{array}{c}
u_{1L} \\

u_{2L} \end{array}
ight) = A_L^{
u \dagger} \left(egin{array}{c}
u_L^0 \\

u_L^{0c} \end{array}
ight), \qquad \left(egin{array}{c}
u_{1R}^c \\

u_{2R}^c \end{array}
ight) = A_R^{
u \dagger} \left(egin{array}{c}
u_R^{0c} \\

u_R^0 \end{array}
ight),$$

– $M=M^T$ (unlike Dirac mass matrix) $\Rightarrow A_L^
u = A_R^{
u*}$

Special Cases

$$-\mathcal{L}=rac{1}{2}\left(egin{array}{cc} ar{
u}_L^0 & ar{
u}_L^{0c} \end{array}
ight)\left(egin{array}{cc} m_T & m_D \ m_D & m_S \end{array}
ight)\left(egin{array}{cc}
u_R^{0c} \
u_R^0 \end{array}
ight)+h.c.$$

• Majorana ($m_D = 0$):

$$egin{aligned} m_1 &= m_T: &
u_{1L} &=
u_L^0, &
u_{1R}^c &=
u_R^{0c}, &
m_2 &= m_S: &
u_{2L} &=
u_L^{0c}, &
u_{2R}^c &=
u_R^0, &
\end{pmatrix}$$

• Dirac
$$(m_T = m_S = 0)$$
:

$$m_1 = +m_D: \qquad \nu_{1L} = \frac{1}{\sqrt{2}} (\nu_L^0 + \nu_L^{0c}), \qquad \nu_{1R}^c = \frac{1}{\sqrt{2}} (\nu_R^{0c} + \nu_R^0)$$
$$m_2 = -m_D: \qquad \nu_{2L} = \frac{1}{\sqrt{2}} (\nu_L^0 - \nu_L^{0c}), \qquad \nu_{2R}^c = \frac{1}{\sqrt{2}} (\nu_R^{0c} - \nu_R^0)$$

- Dirac ν (4 components) equivalent to two degenerate ($|m_1| = |m_2|$) Majorana ν 's with $m_1 = -m_2$ and 45° mixing (cancel in $\beta\beta_{0\nu}$)
- Useful description for Dirac limit of general case
- Recover usual Dirac expression

$$-\mathcal{L}=rac{m_D}{2}(ar{
u}_{1L}
u_{1R}^c-ar{
u}_{2L}
u_{2R}^c)+h.c.=m_D(ar{
u}_L^0
u_R^0+ar{
u}_R^0
u_L^0)$$

- No
$$\nu_L^0 - \nu_L^{0c}$$
 or $\nu_R^{0c} - \nu_R^0$ mixing $\Rightarrow L$ conserved

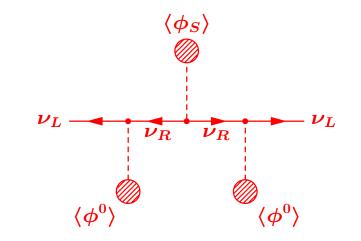
• Seesaw (a.k.a. minimal or Type I seesaw) $(m_S \gg m_{D,T})$:

$$egin{aligned} m_1 &\sim m_T - rac{m_D^2}{m_S}: &
u_{1L} &\sim
u_L^0 - rac{m_D}{m_S}
u_L^{0c} &\sim
u_L^0, \ m_2 &\sim m_S: &
u_{2L} &\sim rac{m_D}{m_S}
u_L^0 +
u_L^{0c} &\sim
u_L^{0c}, \end{aligned}$$

– E.g.,
$$m_T=0, \ m_D=\mathcal{O}(m_{u,e,d}),$$

 $m_S=\mathcal{O}(M_X\sim 10^{14}~{
m GeV})$:

$$ert m_1 ert \sim m_D^2/m_S \ll m_D$$
 $u_{1M} \sim
u_L^0 +
u_R^{0c} ext{ (active)}$



- Lower m_S possible (even TeV)

– Heavy (~sterile) u_{2M} decouples at low energy

- ν_{2M} decays \Rightarrow leptogenesis

Active-sterile ($\nu_L^0 - \nu_L^{0c}$) mixing (LSND)

- No active-sterile mixing for Majorana, Dirac, or seesaw
- m_D and m_S (and/or m_T) both small and comparable:

- Mechanism?

- Pseudo-Dirac ($m_T, m_S \ll m_D$):
 - Small mass splitting, small L violation, e.g.,

$$m_T=\epsilon, \; m_S=0 \quad \Rightarrow \quad |m_{1,2}|=m_D\pm\epsilon/2$$

- Reactor and accelerator disappearance limits?
- Cosmological implications?

Extension to Three Families

• Dirac mass: $-\mathcal{L}_D = \bar{\nu}_L^0 M_D \nu_R^0 + \bar{\nu}_R^0 M_D^{\dagger} \nu_L^0$

$$u_L^0 \equiv \left(egin{array}{c}
u_{1L}^0 \
u_{2L}^0 \
u_{3L}^0 \end{array}
ight) = A_L^
u
u_L, \qquad
u_R^0 \equiv \left(egin{array}{c}
u_{1R}^0 \
u_{2R}^0 \

u_{2R}^0 \

u_{3R}^0 \end{array}
ight) = A_R^
u
u_R$$

– M_D = arbitrary 3 imes 3 Dirac mass matrix

$$A_L^{
u\dagger} M_D A_R^
u = \left(egin{array}{ccc} m_1 & 0 & 0 \ 0 & m_2 & 0 \ 0 & 0 & m_3 \end{array}
ight)$$

- Leptonic weak charge lowering current

$$J_W^{\ell\mu} = 2ar e_L \gamma^\mu V_\ell^\dagger
u_L = (ar e \,\,ar \mu \,\,ar au) \gamma^\mu (1-\gamma^5) V_\ell^\dagger \left(egin{array}{c}
u_1 \
u_2 \
u_3 \end{array}
ight)$$

- $U \equiv V_{\ell}^{\dagger} = A_L^{e\dagger} A_L^{\nu}$ is Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix (leptonic analog of CKM)
- Choose ν_L , e_L phases: remove 5 unobservable phases from V_{ℓ}^{\dagger} (choose ν_R , e_R phases for real non-negative masses)

$$U = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{atmospheric}} \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}}_{\text{reactor limits}} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Solar}}$$

- $c_{ij} \equiv \cos \theta_{ij}$, $s_{ij} \equiv \sin \theta_{ij}$, $\delta = CP$ -violating phase (if $s_{13} \neq 0$) ($s_{ij}, \delta \neq CKM$ angles/phase)

- More on unobservable phases:
 - Most general unitary 3×3 PMNS matrix \hat{U} : 3 angles, 6 phases

$$J_W^{\ell\mu} = (ar e \,\,ar \mu \,\,ar au) \gamma^\mu (1-\gamma^5) \hat U \left(egin{array}{c}
u_1 \
u_2 \
u_3 \end{array}
ight)$$

$$\hat{U} = egin{pmatrix} e^{-ieta_1} & 0 & 0 \ 0 & e^{-ieta_2} & 0 \ 0 & 0 & e^{-ieta_3} \end{pmatrix} \underbrace{U}_{m{s_{ij}},m{\delta}} egin{pmatrix} e^{ilpha_1} & 0 & 0 \ 0 & e^{ilpha_2} & 0 \ 0 & 0 & e^{ilpha_3} \end{pmatrix}$$

- $\beta_i, \alpha_j \,\, not$ determined by diagonalization ($\hat{U}^\dagger \hat{U} = \hat{U} \hat{U}^\dagger = I$)
- Only depends on $\alpha_j \beta_i \Rightarrow$ can choose $\alpha_3 = 0$
- Redefine $\nu_{jL} \rightarrow e^{-i\alpha_j} \nu_{jL}$, $e_{iL} \rightarrow e^{-i\beta_i} e_{iL} \Rightarrow \hat{U} \rightarrow U$
- (Independent) e_{iR}, ν_{jR} phases chosen so that $m_{ei}, m_{\nu j} \geq 0$

- Majorana mass: $-\mathcal{L}_T = \frac{1}{2} \left(\bar{\nu}_L^0 M_T \nu_R^{0c} + \bar{\nu}_R^{0c} M_T^\dagger \nu_L^0 \right)$
 - Diagonalize: $M_T \Rightarrow A_L^{\nu \dagger} M_D A_R^{\nu}$ by $\nu_L^0 = A_L^{\nu} \nu_L, \, \nu_R^{0c} = A_R^{\nu} \nu_R^c$

- But
$$\bar{\psi}_{aL}\psi^c_{bR} = \bar{\psi}_{bL}\psi^c_{aR}$$
, where $\psi^c_R = \mathcal{C}\bar{\psi}^T_L$

- Therefore $M_T = M_T^T \Rightarrow A_L^{\nu} = A_R^{\nu *}$
- Phases determined by $m_i \ge 0 \Rightarrow$ two unremovable Majorana phases in U (observable in $\beta\beta_{0\nu}$?)

$$U = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{atmospheric, } s_{23}^2 \sim \frac{1}{2}} \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}}_{s_{13}^2 \lesssim 0.035, \ \delta = ?} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Solar, } s_{12}^2 \sim 0.3} \underbrace{\begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{Majorana only}}$$

- Same results for active sector in seesaw model

• General case (3 active and 3 sterile):

$$-\mathcal{L}=rac{1}{2}\left(egin{array}{cc} ar{
u}_L^0 & ar{
u}_L^{0c} \end{array}
ight)\left(egin{array}{cc} M_T & M_D \ M_D^T & M_S \end{array}
ight)\left(egin{array}{cc}
u_R^{0c} \
u_R^0 \end{array}
ight)+h.c.$$

–
$$M_D$$
, $M_T = M_T^T$, $M_S = M_S^T$ are $3 imes 3$

- 6 Majorana mass eigenstates
- Majorana, Dirac, seesaw, active-sterile mixing (LSND) limits
- Can also have > 3 or < 3 sterile