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Mass, Mixing, and Intrinsic Properties

• Weyl fermion

– Minimal (two-component) fermionic degree of freedom

– ψL↔ ψcR by CP (ψcR ∼ ψ†L)

• Active Neutrino (a.k.a. ordinary, doublet)

– in SU(2) doublet with charged lepton → normal weak
interactions

– νL↔ νcR by CP

• Sterile Neutrino (a.k.a. singlet, right-handed)

– SU(2) singlet; no interactions except by mixing, Higgs, or BSM

– νR↔ νcL by CP

– Almost always present: Are they light? Do they mix?
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• Fermion Mass

– Transition between right and left Weyl spinors:

mψ̄LψR +m∗ψ̄RψL→ m
(
ψ̄LψR + ψ̄RψL

)

( m ≥ 0 by ψL,R phase changes)

• Dirac Mass

– Connects two distinct Weyl spinors
(usually active to sterile):
mD (ν̄LνR + ν̄RνL) = mDν̄DνD

– Dirac field: νD ≡ νL + νR

– 4 components, ∆L = 0

– ∆t3L = ±1
2
→ Higgs doublet

– Why small? (Large dimensions? Higher-

dimensional operators? String instantons?)
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with such statements. In any case, most particle physicists believe that either
an alternative mechanism or some explanation for a small hν is needed, as
will be discussed below.
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FIGURE 7.41

Mechanisms for generating a Dirac neutrino mass. Left: an elementary
Yukawa coupling to the neutral Higgs doublet field φ0. Right: a higher-
dimensional operator leading to a suppressed Yukawa coupling.

Majorana Masses

Majorana mass terms are more economical in that they only require a sin-
gle Weyl field, i.e., ΨbR = Ψc

aR in (7.329). They are not as familiar as Dirac
mass terms because they violate fermion number by two units. For the quarks
and charged leptons such mass terms are forbidden because they would vi-
olate color and/or electric charge. However, the neutrinos do not carry any
unbroken gauge quantum numbers, so Majorana masses are a possibility.

For an active neutrino, a Majorana mass term describes a transition between
a left-handed neutrino and its conjugate right-handed antineutrino. In four-
component language, it can be written

−LT =
mT

2
(ν̄Lν

c
R + ν̄c

RνL) =
mT

2

�
ν̄LCν̄T

L + νT
L CνL

�
=

mT

2
ν̄MνM . (7.331)

As is clear from the second form, LT can be viewed as the annihilation or
creation of two neutrinos, and therefore violates lepton number by two units,
∆L = 2. In the last form in (7.331), νM ≡ νL + νc

R is a self-conjugate‡‡

two-component (Majorana) field satisfying νM = νc
M ≡ Cν̄T

M . A Majorana
ν is therefore its own antiparticle and can mediate neutrinoless double beta

‡‡Unlike a Hermitian scalar, a Majorana state still has two helicities, corresponding to νL

and νc
R. They only mix by the Majorana mass term, so there is still an approximately

conserved lepton number to the extent that mT is small. For example, there could be
a cosmological asymmetry between νL and νc

R, even for Majorana masses, if the rate for
transitions between them is sufficiently slow compared to the age of the universe (Barger
et al., 2003).

mD = hνν =
√

2hν〈ϕ0〉
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• Majorana Mass

– Connects Weyl spinor with itself:
mT

2

(
ν̄Lν

c
R + ν̄cRνL

)
= mT

2
ν̄MνM (active)

mS
2

(
ν̄cLνR + ν̄Rν

c
L

)
= mS

2
ν̄MS

νMS
(sterile)

– Majorana fields:

νM ≡ νL + νcR = νcM
νMS

≡ νcL + νR = νcMS

– 2 components, ∆L = ±2, self-conjugate

– Active: ∆t3L = ±1 (triplet or

higher-dimensional operator)

– Sterile: ∆t3L = 0 (singlet or bare mass)

– Phase of νL or νcL fixed by mT,S ≥ 0

νL

νc
R

mT

νL

νL

mT

– Typeset by FoilTEX – 1
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FIGURE 7.43

Mechanisms for a Majorana mass term. Top left: coupling to a neutral Higgs
triplet field φ0

T . Top right: a higher-dimensional operator coupling to two
Higgs doublets. Botton left: the minimal seesaw mechanism (a specific im-
plementation of the higher-dimensional operator), in which a light active neu-
trino mixes with a very heavy sterile Majorana neutrino. Bottom right: a
loop diagram involving a charged scalar field h−.

The four-component fields for Dirac and for active and sterile Majorana
neutrinos can therefore be written

νD =

�NL

NR

�
=

� NL

iσ2N c∗
L

�

νM =

�NL

N c
R

�
=

� NL

iσ2N ∗
L

�
, νMS

=

�N c
L

NR

�
=

� N c
L

iσ2N c∗
L

�
,

(7.336)

where two of the components are not independent in the Majorana cases.
The free-field equations of motion with a Majorana mass term obtained

from the Euler-Lagrange equation (2.18) are

i �∂νL − mT Cν̄T
L = 0, iσ̄µ∂µNL − mT iσ2N ∗

L = 0. (7.337)

This leads to the free-field expression

νM (x) =

�
d3�p

(2π)32Ep

�

s=+,−

�
u(�p, s) a(�p, s)e−ip·x + v(�p, s)a†(�p, s)e+ip·x� ,

(7.338)
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where two of the components are not independent in the Majorana cases.
The free-field equations of motion with a Majorana mass term obtained

from the Euler-Lagrange equation (2.18) are

i �∂νL − mT Cν̄T
L = 0, iσ̄µ∂µNL − mT iσ2N ∗

L = 0. (7.337)

This leads to the free-field expression

νM (x) =

�
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(2π)32Ep

�
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�
u(�p, s) a(�p, s)e−ip·x + v(�p, s)a†(�p, s)e+ip·x� ,
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Neutrinoless Double Beta Decay (ββ0ν)

• ∆L = 2: Majorana mass only (mββ ∼ mT )

W − W −νL νL

p e− e− p

n n

mββ

– Typeset by FoilTEX – 1

• Other mechanisms, e.g., RP violation in supersymmetry
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Mixed Models

• Can have simultaneous Majorana and Dirac mass terms

−L =
1

2

(
ν̄0
L ν̄0c

L

)
︸ ︷︷ ︸
weak eigenstates

(
mT mD

mD mS

)(
ν0c
R

ν0
R

)
+ h.c.

mT : |∆L| = 2, |∆t3L| = 1 (Majorana)

mD : |∆L| = 0, |∆t3L| =
1

2
(Dirac)

mS : |∆L| = 2, |∆t3L| = 0 (Majorana)

–
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• Mass eigenvalues:

Aν†L

(
mT mD

mD mS

)

︸ ︷︷ ︸
M=MT

AνR =

(
m1 0
0 m2

)

• (Majorana) mass eigenstates: νiM = νiL+ νciR = νciM , i = 1, 2

(
ν1L

ν2L

)
= Aν†L

(
ν0
L

ν0c
L

)
,

(
νc1R
νc2R

)
= Aν†R

(
ν0c
R

ν0
R

)
,

– M = MT (unlike Dirac mass matrix) ⇒ AνL = Aν∗R
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Special Cases

−L =
1

2

(
ν̄0
L ν̄0c

L

) ( mT mD

mD mS

)(
ν0c
R

ν0
R

)
+ h.c.

• Majorana (mD = 0):

m1 = mT : ν1L = ν0
L, νc1R = ν0c

R

m2 = mS : ν2L = ν0c
L , νc2R = ν0

R
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• Dirac (mT = mS = 0):

m1 = +mD : ν1L =
1
√

2
(ν0
L + ν0c

L ), νc1R =
1
√

2
(ν0c
R + ν0

R)

m2 = −mD : ν2L =
1
√

2
(ν0
L − ν

0c
L ), νc2R =

1
√

2
(ν0c
R − ν

0
R)

– Dirac ν (4 components) equivalent to two degenerate (|m1| = |m2|)
Majorana ν’s with m1 = −m2 and 45◦ mixing (cancel in ββ0ν)

– Useful description for Dirac limit of general case

– Recover usual Dirac expression

−L =
mD

2
(ν̄1Lν

c
1R − ν̄2Lν

c
2R) + h.c. = mD(ν̄0

Lν
0
R + ν̄0

Rν
0
L)

– No ν0
L − ν0c

L or ν0c
R − ν0

R mixing ⇒ L conserved

SSI 2010 Paul Langacker (IAS)



• Seesaw (a.k.a. minimal or Type I seesaw) (mS � mD,T ) :

m1 ∼ mT −
m2
D

mS

: ν1L ∼ ν0
L −

mD

mS

ν0c
L ∼ ν

0
L,

m2 ∼ mS : ν2L ∼
mD

mS

ν0
L + ν0c

L ∼ ν
0c
L

– E.g., mT = 0, mD = O(mu,e,d),
mS = O(MX ∼ 1014 GeV):

|m1| ∼ m2
D/mS � mD

ν1M ∼ ν0
L + ν0c

R (active)

– Lower mS possible (even TeV)

– Heavy (∼sterile) ν2M decouples at low energy

– ν2M decays ⇒ leptogenesis
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The four-component fields for Dirac and for active and sterile Majorana
neutrinos can therefore be written

νD =

�NL

NR

�
=

� NL

iσ2N c∗
L

�

νM =

�NL

N c
R

�
=

� NL

iσ2N ∗
L

�
, νMS

=

�N c
L

NR

�
=

� N c
L

iσ2N c∗
L

�
,

(7.336)

where two of the components are not independent in the Majorana cases.
The free-field equations of motion with a Majorana mass term obtained

from the Euler-Lagrange equation (2.18) are

i �∂νL − mT Cν̄T
L = 0, iσ̄µ∂µNL − mT iσ2N ∗

L = 0. (7.337)

This leads to the free-field expression

νM (x) =

�
d3�p

(2π)32Ep

�

s=+,−

�
u(�p, s) a(�p, s)e−ip·x + v(�p, s)a†(�p, s)e+ip·x� ,

(7.338)
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Active-sterile (ν0
L − ν0c

L ) mixing (LSND)

• No active-sterile mixing for Majorana, Dirac, or seesaw

• mD and mS (and/or mT ) both small and comparable:

– Mechanism?

• Pseudo-Dirac ( mT , mS � mD):

– Small mass splitting, small L violation, e.g.,

mT = ε, mS = 0 ⇒ |m1,2| = mD ± ε/2

• Reactor and accelerator disappearance limits?

• Cosmological implications?
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Extension to Three Families

• Dirac mass: −LD = ν̄0
LMDν

0
R + ν̄0

RM
†
Dν

0
L

ν0
L ≡



ν0

1L

ν0
2L

ν0
3L


 = AνLνL, ν0

R ≡



ν0

1R

ν0
2R

ν0
3R


 = AνRνR

– MD = arbitrary 3× 3 Dirac mass matrix

Aν†L MDA
ν
R =



m1 0 0
0 m2 0
0 0 m3



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– Leptonic weak charge lowering current

J`µW = 2ēLγ
µV †` νL = (ē µ̄ τ̄ )γµ(1− γ5)V †`



ν1

ν2

ν3




– U ≡ V †` = Ae†L A
ν
L is Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix (leptonic analog of CKM)

– Choose νL, eL phases: remove 5 unobservable phases from V †`
(choose νR, eR phases for real non-negative masses)

U =




1 0 0
0 c23 s23

0 −s23 c23




︸ ︷︷ ︸
atmospheric




c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13




︸ ︷︷ ︸
reactor limits



c12 s12 0
−s12 c12 0

0 0 1




︸ ︷︷ ︸
Solar

– cij ≡ cos θij, sij ≡ sin θij, δ = CP -violating phase (if s13 6= 0)

(sij, δ 6= CKM angles/phase)
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• More on unobservable phases:

– Most general unitary 3× 3 PMNS matrix Û : 3 angles, 6 phases

J`µW = (ē µ̄ τ̄ )γµ(1− γ5)Û



ν1

ν2

ν3




Û =



e−iβ1 0 0

0 e−iβ2 0
0 0 e−iβ3


 U︸︷︷︸
sij,δ



eiα1 0 0

0 eiα2 0
0 0 eiα3




– βi, αj not determined by diagonalization (Û†Û = ÛÛ† = I)

– Only depends on αj − βi⇒ can choose α3 = 0

– Redefine νjL → e−iαjνjL, eiL → e−iβieiL ⇒ Û → U

– (Independent) eiR, νjR phases chosen so that mei,mνj ≥ 0
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• Majorana mass: −LT = 1
2

(
ν̄0
LMTν

0c
R + ν̄0c

RM
†
Tν

0
L

)

– Diagonalize: MT ⇒ Aν†L MDA
ν
R by ν0

L = AνLνL, ν
0c
R = AνRν

c
R

– But ψ̄aLψcbR = ψ̄bLψ
c
aR, where ψcR = Cψ̄TL

– Therefore MT = MT
T ⇒ AνL = Aν∗R

– Phases determined by mi ≥ 0 ⇒ two unremovable Majorana
phases in U (observable in ββ0ν?)

U =

1 0 0

0 c23 s23

0 −s23 c23


︸ ︷︷ ︸
atmospheric, s2

23∼1
2

 c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13


︸ ︷︷ ︸

s2
13.0.035, δ=?

 c12 s12 0

−s12 c12 0

0 0 1


︸ ︷︷ ︸

Solar, s2
12∼0.3

eiα1 0 0

0 eiα2 0

0 0 1


︸ ︷︷ ︸

Majorana only

– Same results for active sector in seesaw model
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• General case (3 active and 3 sterile):

−L =
1

2

(
ν̄0
L ν̄0c

L

) ( MT MD

MT
D MS

)(
ν0c
R

ν0
R

)
+ h.c.

– MD, MT = MT
T , MS = MT

S are 3× 3

– 6 Majorana mass eigenstates

– Majorana, Dirac, seesaw, active-sterile mixing (LSND) limits

– Can also have > 3 or < 3 sterile
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