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Neutrino Counting

• Invisible Z width: Nν = 3 + ∆Nν

– ∆Nν = −0.015(9) (also counts light

ν̃ (1/2), triplet Majoron + scalar (2), etc.)

• Cosmology: big bang nucleosynthesis,
large scale structure
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Dirac or Majorana

• ββ0ν

– nn→ ppe−e− (mββ ≡
∑
iU

2
eimi)

• Magnetic or electric dipole moments

– Dirac: may have diagonal (ν̄σαβνFαβ) or
transition (ν̄iσ

αβνjFαβ, i 6= j) moments

– Majorana: only transition moments
(diagonal Dirac from off-diagonal Majorana)

– One loop (Dirac):
µi ∼ 3eGFmi

8
√

2π2 ∼ 3.2× 10−19
( mi

1 eV

)
µB

(much larger in some models)

– Laboratory, astrophysical limits:
µ < 10−10 − 10−12µB

W − W −νL νL

p e− e− p

n n

mββ
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Absolute Mass Scale

• Tritium β spectrum (KATRIN)

mνe ≡
(∑

i |U2
ei|m2

i

)1/2

. 2 eV→ 0.2 eV

• Large scale structure:
Σ ≡ ∑imi . (0.5− 1) eV→ O(0.05) eV

• If ββ0ν observed (mββ & 0.01 eV) →
inverted or degenerate
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Neutrino Oscillations and Propagation

• The two flavor case:

|νe〉︸︷︷︸
weak

= |ν1〉 cos θ + |ν2〉 sin θ︸ ︷︷ ︸
mass

, |νµ〉 = −|ν1〉 sin θ + |ν2〉 cos θ

• t = 0: |ν(0)〉 = |νµ〉 (from π+ → µ+νµ)

• t > 0:

|ν(t)〉 = −|ν1〉 sin θe−iE1t + |ν2〉 cos θe−iE2t

∼
[
−|ν1〉 sin θe−i

m2
1t

2E + |ν2〉 cos θe−i
m2

2t

2E

]
e−iEt
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• Probability of oscillating to νe (appearance experiment)

Pνµ→νe(L) = |〈νe|ν(t)〉|2 = sin2 θ cos2 θ

∣∣∣∣−e−i
m2

1t

2E t + e−i
m2

2t

2E t

∣∣∣∣
2

= sin2 2θ sin2

(
∆m2L

4E

)
−−−−−−−−−→
∆m2L/4E large

1

2
sin2 2θ

✲ �
�

��✒

❍❍❍❥

✻

�
�

��

�
��✒

π+

µ+

νµ νe

e−

p
L ✲✛

• ∆m2 = m2
2 −m2

1, L ∼ t

• Oscillation length:
Losc = 4πE

∆m2

• Survival probability (disappearance experiment):

Pνµ→νµ(L) = 1− Pνµ→νe(L)
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Three or More Families

|ν(0)〉 = |νa〉︸︷︷︸
weak

=
∑

i

U∗ai |νi〉︸︷︷︸
mass

⇒ |ν(t)〉 ∼
∑

i

U∗ai |νi〉 e−i
m2
i t

2E

Pνa→νb(L) =|〈νb|ν(t)〉|2

=δab − 4
∑

i<j

<e(U∗aiUbiUajU∗bj
)

sin2

(
∆ijL

4E

)

+ 2
∑

i<j

=m(U∗aiUbiUajU∗bj
)

︸ ︷︷ ︸
CP violating

sin

(
∆ijL

2E

)

• ∆ij ≡ m2
i −m2

j

• Rephasing invariant
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Antineutrinos

PνaL→νbL(L) =δab − 4
∑

i<j

<e(U∗aiUbiUajU∗bj
)

sin2

(
∆ijL

4E

)

+2
∑

i<j

=m(U∗aiUbiUajU∗bj
)

︸ ︷︷ ︸
CP violating

sin

(
∆ijL

2E

)

PνaL→νbL(L) −−−−→
U→U∗

PνbL→νaL(L)

PνcaR→νcbR(L) = PνbL→νaL(L) (by CPT )

=δab − 4
∑

i<j

<e(U∗aiUbiUajU∗bj
)

sin2

(
∆ijL

4E

)

−2
∑

i<j

=m(U∗aiUbiUajU∗bj
)

sin

(
∆ijL

2E

)
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Propagation in Matter

• Coherent forward scattering in matter ⇒ potential (cf optics)

• Two flavor oscillations in vacuum: |ν(t)〉 =
∑
a ca(t)|νa〉

i
d

dt

(
ca(t)
cb(t)

)
=

∆m2

4E

(− cos 2θ sin 2θ
sin 2θ cos 2θ

)(
ca(t)
cb(t)

)

• In matter (different interactions of νa and νb):

Z

νµ e−

νµ e−

W

e− νe

νe e−

Z

νe e−

νe e−
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SSI 2010 Paul Langacker (IAS)



i
d

dt

(
ca(t)
cb(t)

)
=



−∆m2

4E
cos 2θ + GF√

2
n ∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ − GF√

2
n



(
ca(t)
cb(t)

)

n =





ne for νeL ↔ νµL, ντL
0 for νµL ↔ ντL
ne − 1

2nn for νeL ↔ νcL
−1

2nn for νµL, ντL ↔ νcL

• Signs reversed for νcR, νR

• Solar (MSW), atmospheric (not sterile; also WNC), long baseline
(hierarchy), supernovae

• MINOS νL vs νcR: new flavor-dependent matter interaction?

(to mimic CPT violation)
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Long Baseline (LBL) Oscillation Experiments

• 3 ν oscillations, small s13 and ∆m2
� (Akhmedov et al, JHEP 04, 078):

Pνµ→νe = α
2

sin
2

2θ12 c
2
23

sin2A∆

A2
+ 4 s

2
13 s

2
23

sin2(A− 1)∆

(A− 1)2

+ 2αs13 sin 2θ12 sin 2θ23 cos(∆ + δ)
sinA∆

A

sin(A− 1)∆

A− 1

where

α =
∆m2

�
|∆m2

Atm|
∼ 0.03, ∆ =

∆m2
AtmL

4E
, A =

2
√

2EGFne

∆m2
Atm︸ ︷︷ ︸

matter• δ → −δ and A→ −A for Pν̄µ→ν̄e

• ∆, A > 0 (normal), ∆, A < 0 (inverted)

• In principle, determine s13, δ, hierarchy (easier if s13 from reactor)
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Sterile Neutrinos
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SuperK 90/99% 

All limits are at 90%CL

unless otherwise noted

LSND 90/99% 

MiniBooNE 

K2K
MINOS

• 1st class oscillations:
νa → νb, both active

• 2nd class: active→ sterile

• LSND: third ∆ij ⇒ sterile ν’s

• LSND + MiniBooNE:
sterile ν’s and CP violation

(but reactor, accelerator disappearance;

other νe appearance; cosmology?)

• νL→ νcL appearance
(need new interactions)

• Non-orthogonal light neutrinos
(from mixing with heavy)
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Models

• No unbroken gauge symmetry forbids Majorana mass for active ν’s

• Seesaw ⇒ leptogenesis (heavy ν2M decay in Type I)

• But

– New TeV physics or string constraints may forbid seesaw

– Appropriate masses not automatic (e.g., SO(10) ⇒
Higgs 126 or HDO) so that Majorana may be negligible

– Alternative baryogenesis (e.g., electroweak)

– Other plausible mechanisms for both Majorana and Dirac
(especially in strings)

• Type, mechanism, scale is open question
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• Small Dirac masses

– Usually forbid bare mass
(string? U(1)′?)

– Higher dimensional operator
(mD ∼ ν〈ϕS〉/MP )

– Large extra dimension
(wave function overlap)

– String instanton

– Non-holomorphic soft
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with such statements. In any case, most particle physicists believe that either
an alternative mechanism or some explanation for a small hν is needed, as
will be discussed below.
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FIGURE 7.41

Mechanisms for generating a Dirac neutrino mass. Left: an elementary
Yukawa coupling to the neutral Higgs doublet field φ0. Right: a higher-
dimensional operator leading to a suppressed Yukawa coupling.

Majorana Masses

Majorana mass terms are more economical in that they only require a sin-
gle Weyl field, i.e., ΨbR = Ψc

aR in (7.329). They are not as familiar as Dirac
mass terms because they violate fermion number by two units. For the quarks
and charged leptons such mass terms are forbidden because they would vi-
olate color and/or electric charge. However, the neutrinos do not carry any
unbroken gauge quantum numbers, so Majorana masses are a possibility.

For an active neutrino, a Majorana mass term describes a transition between
a left-handed neutrino and its conjugate right-handed antineutrino. In four-
component language, it can be written

−LT =
mT

2
(ν̄Lν

c
R + ν̄c

RνL) =
mT

2

�
ν̄LCν̄T

L + νT
L CνL

�
=

mT

2
ν̄MνM . (7.331)

As is clear from the second form, LT can be viewed as the annihilation or
creation of two neutrinos, and therefore violates lepton number by two units,
∆L = 2. In the last form in (7.331), νM ≡ νL + νc

R is a self-conjugate‡‡

two-component (Majorana) field satisfying νM = νc
M ≡ Cν̄T

M . A Majorana
ν is therefore its own antiparticle and can mediate neutrinoless double beta

‡‡Unlike a Hermitian scalar, a Majorana state still has two helicities, corresponding to νL

and νc
R. They only mix by the Majorana mass term, so there is still an approximately

conserved lepton number to the extent that mT is small. For example, there could be
a cosmological asymmetry between νL and νc

R, even for Majorana masses, if the rate for
transitions between them is sufficiently slow compared to the age of the universe (Barger
et al., 2003).
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• Small Majorana masses

– Higgs triplet
(spontaneous 6L excluded)

– Stringy Weinberg operator

– Heavy νR (Type I seesaw)

– Heavy Higgs triplet
(Type II seesaw)

– Loops (new scalars)

– TeV (extended) seesaws

– RP violation

The Standard Electroweak Theory 409
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FIGURE 7.43

Mechanisms for a Majorana mass term. Top left: coupling to a neutral Higgs
triplet field φ0

T . Top right: a higher-dimensional operator coupling to two
Higgs doublets. Botton left: the minimal seesaw mechanism (a specific im-
plementation of the higher-dimensional operator), in which a light active neu-
trino mixes with a very heavy sterile Majorana neutrino. Bottom right: a
loop diagram involving a charged scalar field h−.

The four-component fields for Dirac and for active and sterile Majorana
neutrinos can therefore be written

νD =

�NL

NR

�
=

� NL

iσ2N c∗
L

�

νM =

�NL

N c
R

�
=

� NL

iσ2N ∗
L

�
, νMS

=

�N c
L

NR

�
=

� N c
L

iσ2N c∗
L

�
,

(7.336)

where two of the components are not independent in the Majorana cases.
The free-field equations of motion with a Majorana mass term obtained

from the Euler-Lagrange equation (2.18) are

i �∂νL − mT Cν̄T
L = 0, iσ̄µ∂µNL − mT iσ2N ∗

L = 0. (7.337)

This leads to the free-field expression

νM (x) =

�
d3�p

(2π)32Ep

�

s=+,−

�
u(�p, s) a(�p, s)e−ip·x + v(�p, s)a†(�p, s)e+ip·x� ,

(7.338)

νL νL
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κ
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where two of the components are not independent in the Majorana cases.
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Outstanding Issues (intrinsic properties)

• Scale of underlying physics? (string, GUT, TeV?)

• Mechanism? (seesaw, LED, HDO, stringy instanton?)

• Hierarchy, Ue3, leptonic CP violation? (mechanism, leptogenesis)

• Absolute mass scale? (cosmology)

• Dirac or Majorana? (mechanism, scale, leptogenesis)

• Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?)
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Outstanding Issues (intrinsic properties)

• Scale of underlying physics? (string, GUT, TeV?) (LHC, flavor)

• Mechanism? (seesaw, LED, HDO, stringy instanton?)(indirect: LHC)

• Hierarchy, Ue3, leptonic CP violation? (mechanism, leptogenesis)

(long baseline, reactor, ββ0ν, supernova)

• Absolute mass scale? (cosmology) (β decay, cosmology, ββ0ν, supernova)

• Dirac or Majorana? (mechanism, scale, leptogenesis) (ββ0ν)

• Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?)

(indirect: LHC)
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Other Topics

• Puzzles/anomalies (LSND,

NuTeV, MiniBooNE, GSI, MINOS)

• Quantum subtleties

• Sterile ν models/constraints

• ν decay

• Decoherence

• Non-standard interactions

• Heavy ν’s

• CPT , Lorentz, equivalence
violation

• FCNC (associated ν̃, ˜̀)

• RP violation

• Mass-varying ν’s

• Time-varying ν’s

• Correlated LHC physics

• Model approaches
(GUTs, family symmetries, string

instantons/HDOs, textures, anarchy,

bimaximal, tri-bimaximal, discrete

S4/A4)
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Neutrino Spectra

ν Oscillations

• Pνa→νb = sin2 2θ sin2
(

∆m2L
4E

)

3 ν Patterns

• Solar: LMA
(SNO, KamLAND, Borexino)

• ∆m2
� ∼ 8 × 10−5 eV2, mixing

large but nonmaximal

• Atmospheric + K2K + MINOS:
|∆m2

Atm| ∼ 2.4 × 10−3 eV2,
near-maximal mixing

• Reactor: Ue3 small (U ≡ V †` )
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• Mixings: let ν± ≡ 1√
2

(νµ ± ντ):

ν3 ∼ ν+

ν2 ∼ cos θ� ν− − sin θ� νe

ν1 ∼ sin θ� ν− + cos θ� νe

!

"
∆m2

!

"

!

∆m2
atm

1

2

3
!

"

∆m2
atm

"

!
∆m2

!

3

1

2

• Normal hierarchy

– Analogous to quarks,
charged leptons

– ββ0ν rate very small

• Inverted hierarchy

– ββ0ν if Majorana

• Degenerate pattern for |m| �
√
|∆m2|
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Conclusions

• Neutrino physics is extremely interesting
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Conclusions

• Neutrino physics is extremely interesting

• Neutrino physics is extremely difficult
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