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Lecture 1 Outline

Defining  “Long” Baseline

 Experiment Ingredients
Neutrino Beams

Neutrino Interactions

Neutrino Cross sections

Calculating Neutrino Event Rates

Neutrino Detectors

Predicting and Measuring Backgrounds



Lecture 1 Outline cont.

 Long Baseline Basics
The mass-mixing matrix : mixing angles and 

phases

Oscillation Probability :          , L, E

Two-flavor approximation

Appearance and disappearance measurements
 Oscillation Searches
 Setting limits

 Measuring parameters



Lecture 1 Outline, cont.

 Experimental Examples :
 Early Searches

 LSND and MiniBooNE (E.  Zimmerman Lecture )

 K2K and MINOS

 OPERA



Lecture 2 Outline

 Three neutrinos,  
 Oscillation probability
 Matter effects
 Neutrino mass hierarchy

 Experimental Techniques :
 Signals, backgrounds and ambiguities
 Experiment baseline
 Neutrino beam configurations

 Experimental Landscape
 Reactor Experiments :         disappearance (Ed Blucher 

lecture)
 appearance : T2K, NOvA, LBNE



Lecture 2 Outline cont.

 Experiment Prospects 
 Understanding Sensitivity Calculations

 Experiment Timelines

 New results to keep an eye on

 Beyond conventional beams?

 Conclusions
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A C C E L E R A T O R  N E U T R I N O  B E A M S

N E U T R I N O  I N T E R A C T I O N S

N E U T R I N O  C R O S S - S E C T I O N S

C A L C U L A T I N G  N E U T R I N O  E V E N T  R A T E S

N E U T R I N O  D E T E C T O R S

P R E D I C T I N G  A N D  M E A S U R I N G  B A C K G R O U N D S

Experiment Ingredients



Neutrino Beams



Neutrino Beams

 Neutrinos are produced from the decay of      and  K mesons

 - (bf 99.9877%)
 - (bf 1.2x10-4) 
 - (bf  63.55%)
 - (bf  5.07%)

 The average distance, d, traveled by an unstable particle before it 
decays is

 -
 -
 -

Mostly       and a few %       



cm

Decay length of pions produced by 120 GeV protons

For a 10 GeV �,
 ~ 27, and d ~ 220 m





Neutrino Beams

 High energy protons hit a target

 Unstable pion and kaon charged particles are produced

 The pions and kaons are “focused” by a magnetic field  to go in 
the desired direction

 The pions and kaons decay into muons and muon neutrinos

 The direction of the magnetic field determines whether  
neutrinos or anti-neutrinos are generated (focus      or       )



Neutrino Beams : Example – NuMI*

120 GeV protons, 10 microsec spill ~every 2 seconds  4 x 1013 protons/spill 

Horn current – 185 kA

By changing the relative position of the target and
1st horn, the neutrino energy spectrum can be 
changed

*Neutrinos at the Main Injector



Composition of a horn focused beam





Neutrino Cross sections



Types of interactions (example topologies)

Quasi-elastic (CCQE)

Neutral Current       (NC      )

Deep Inelastic (DIS)

Resonant 

Coherent

Single pion CC (CC    )    

CC

NC

lepton

hadronic shower

recoil nucleon

pion



Low energy cross sections

neutrino anti-neutrino



Neutrino CC Energy Spectrum

 Flux in neutrinos/cm2/GeV/proton

 Cross section=cross section/nucleon/GeV in 

 Ntgt nucleons= f (Mass,np,nn)

 Npot =#protons/unit time × time



Neutrino Detectors

 Key Properties
 Target Mass  # of interactions produced

 Particle ID, efficiency# of interactions detected

 Energy, momentum measurement

 Vertex resolution



Tracking Calorimeter

NuTeV @ FNAL



Liquid scintillator tracking calorimeter

A 2-GeV muon is 60 planes long.

NOvA



Ring imaging particle ID



3-d imaging : Bubble chamber

Gargamelle Bubble Chamber

1st detection of a NC
interaction



3-d imaging : Emulsion

NET-scan (Application to DONUT)

2.6 mm

50K segments 3K tracks 200 in vol 1 neutrino int.

Fe

Emulsion (film) layers



3-d imaging : Liquid Argon



Detector Summary

 Tracking Calorimeters
 Target material

 Steel

 Carbon,lead, 
scint,water,He… 

 Tracking detectors
 Gas tubes

 Liquid scintillator

 Solid scintillator

 Cherenkov radiation 
detectors
 Target materials

 Water

 Scintillator

 Mineral Oil

 Active detectors : PMT’s

 3-d Imaging 
 Bubble Chambers

 Emulsion

 Liquid Argon



Calculating Neutrino Event Rates

 Ingredients
 Flux

 Cross section

 Target Mass

 Protons on target

 Detection efficiency, 



NuMI – MINOS example

 Proton beam delivers 4x1013 protons every 2sec
 ~1018 protons/day
 Produce a few pions/proton
 About half of the  pions produce neutrinos aimed in the right 

direction

 Neutrino flux @500m is ~ 10-8 /cm2/GeV/proton
 Neutrino cross section is ~10-38 cm2/GeV
 Neutrino energy is ~1-10 GeV
 Near Detector – 1000 tons (~6x1032 target nucleons)
 Muon detection efficiency ~95%
  Few neutrinos each spill
  Thousands of neutrinos per day



Predicting and Measuring Backgrounds

 Intrinsic Backgrounds 
 Looking for an event 

signature : signal

 Another process produces 
the same result

 Detector Performance
 A process occurs and the 

detector reconstruction 
identifies it as a signal 
event

Detector reconstruction says e



Predicting and Measuring Backgrounds

 Predicting : Monte Carlo simulation of processes

 Measuring : Make measurements where signal can’t 
occur



T H E  M A S S - M I X I N G  M A T R I X  :  M I X I N G  
A N G L E S  A N D  P H A S E S

O S C I L L A T I O N  P R O B A B I L I T Y  :

T H R E E  N E U T R I N O S    

N E U T R I N O  M A S S  H I E R A R C H Y

T W O - N E U T R I N O  A P P R O X I M A T I O N

Long Baseline Basics



The Neutrino Mass-mixing matrix

Three neutrinos having unique masses
are related to the three flavor states
via a Unitary mixing matrix.



The Neutrino Mass-mixing matrix



Features of the matrix

• Two component mixing,12;23
• 13 mixing and Complex phase

Let’s first consider the case of two neutrinos :



Neutrino Oscillation Probability

=1 =4



A P P E A R A N C E  A N D  D I S A P P E A R A N C E

S E T T I N G  L I M I T S

M E A S U R I N G  P A R A M E T E R S

Oscillation Signatures



Appearance and Disappearance Probability

L/E = 2.

E = 3 GeV L = 735 km



Disappearance “signals” 

1 2

1
2

Un-oscillated

Oscillated

spectrum                                            spectrum ratio

Monte Carlo Monte Carlo



Measuring Parameters

From a MINOS MC mock data challenge

What value of              and        
“best fit” the data?

For what set of points would the  
differ by 1 (68% C.L.)?



Appearance signals



Setting Limits for No Oscillations

allowed

excluded



E A R L Y  S E A R C H E S  F O R  N E U T R I N O  
O S C I L L A T I O N S

L S N D  A N D  M i n i B O O N E

K 2 K  A N D  M I N O S

O P E R A   

Experimental Examples



Early searches : setting limits

1992

measured

proposals



1995 : LSND 

167 ton – liquid scintillator
1220 8” PMT
Scintillation & cherenkov light

Los Alamos LANSCE 800 MeV accelerator



Evidence for 

excluded

Also reported evidence for 

This result was/is controversial….



1998 MiniBooNE Proposal

Search for 

With L/E comparable to
LSND : E~400-800 MeV
L ~ 500 M



MiniBooNE Results

No signal is observed in the LSND
L/E region



1998 : Super-K atmospheric neutrinos

2004
Disappearance of atmospheric 



1st accelerator long-baseline  experiment 

250 km





Super-K, K2K contours

Allowed regions from Super-K and K2K



Main Injector Neutrino Oscillation Search 
: 
MINOS

Main Injector Neutrino Oscillation Search : 
MINOS

735 km



Neutrinos from the Main Injector

735 km

1.2 km



What is a neutrino?



MINOS Detectors

1 kiloton Near Detector

5.3 kiloton Far Detector

Steel/solid scintillator, magnetized 
tracking calorimeters



First Results - 2006
59

• Measurement errors are 1 sigma, 1 d.o.f.
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Ratio of Data/MC

• Data is well-described by the best-fit oscillation 
hypothesis

Data

Best-fit
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Neutrino 2010



?

Phys. Rev. Lett. 85(2000) 3999-4003



DONUT

Prompt Neutrino
Beam



1st       events



CNGS

CERN to Gran Sasso Long Baseline Neutrinos



CNGS - OPERA



appearance

Difficult experiment, and can
only expect a handful of events…



OPERA        candidate

May 2010



Summary

 It has long been hypothesized that neutrinos may oscillate  and 
hence have mass, see :
 Pontecorvo, 1961

 Kayser, 1982

 Terrestrial based searches (accelerators and reactors) with L/E 
configurations sensitive to detecting        >0.01 all had null 
results 

 Data from solar and atmospheric neutrinos fit to two neutrino 
oscillation hypothesis is consistent with two different values of        
, one small (        )  and the other very small(        )

 Long baseline accelerator experiments have confirmed and 
continue to explore the the mass-mixing parameters at the     
mass scale



Lecture 2 Outline

 Three neutrinos,  
 Oscillation probability
 Matter effects
 Neutrino mass hierarchy

 Experimental Techniques :
 Signals, backgrounds and ambiguities
 Experiment baseline
 Neutrino beam configurations

 Experimental Landscape
 Reactor Experiments :         disappearance (Ed Blucher 

lecture)
 appearance : T2K, NOvA, LBNE



Lecture 2 Outline cont.

 Experiment Prospects 
 Understanding Sensitivity Calculations

 Experiment Timelines

 Nu results to keep an eye on

 Beyond Superbeams?

 Conclusions
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