Particle Acceleration Results from Fermi (Higher Energy Astrophysics)

Roger Blandford KIPAC Stanford

3 viii 2011

Fermi

- Joint NASA-DOE-Italy- France-Japan-Sweden, Germany... mission
- Launch June 11 2008
 - Cape Canaveral
- LAT: 0.02-300 GeV
- All sky every 3hr
- ~100 x Compton Gamma Ray Observatory
- ~3 γ -rays per second

GLAST

LAT

- 0.02 300 GeV
- 2.5 sr, 0.3 0.9m²
- 5° 5' resolution
- $\Box \quad \Delta \ln E \sim 0.1$
- 3 x 10⁻⁹ cm⁻² s⁻¹ (>0.1 GeV, point source)
- 10⁹ photons (3Hz)
- All sky every 3hr

Sources after a decade?

- 10,000 Active Galactic Nuclei
- 1000 Gamma Ray Bursts
- 100 Pulsars
- 100 Supernova Remnants
- 10 Galaxies
- 10 Clusters of Galaxies
- 10 X-Ray Binaries
- ? Unidentified Sources

Fermi has greatly exceeded expectations

3 viii 2011

GBM

- 0.01-30 MeV
- 9sr, 100 cm^2 .
- 1° resolution
- $\Box \quad \Delta \ln E \sim 0.1$
- Combine with Swift

Fermi Particle acceleration

• Ellison, Hofmann, Sarazin lectures

- Observations of cosmic rays
- Cosmic ray sources
- Diffusive shock acceleration
- Supernova remnant observations
- Hadronic and leptonic models of gamma ray emission
- Molecular and atomic hydrogen cloud emission
- UHECR observations and phenomenology

 $\mathbf{V} \thicksim \boldsymbol{\Omega} \boldsymbol{\Phi}$

Particle Acceleration

Unipolar Induction

Stochastic Acceleration

Φ

 $\Delta E/E \sim +/-u/c$ $ln(E) \sim u/c (Rt)^{1/2}$ С

Unipolar Inductors

• Billion M_o Black Hole

- B ~ 1T; Ω ~ 10⁻³ rad s⁻¹
- V ~ 1ZV; I ~ 10EA

 $- P \sim 10^{39} W$

Feature of UHECR sources?

1 M_o Neutron Star B ~ 10MT; Ω ~ 100 rad s⁻¹ V ~ 30 PV; I ~ 300TA P ~ 10³¹W

Crab Nebula

Crab Pulsar

- Discovered in 1968
 - Turning point in history of astronomy
 - Predicted by Pacini
- Spinning, magnetized neutron star
 - 12km radius
 - 30 Hz spin frequency
 - $\ 200 \ MT \ (2x10^{12}G) \ surface \ magnetic \ field$
 - Radio through > 100 GeV γ -ray pulsation
- Giant electrical generator
 - ~ 50PV; 200TA; $2x10^{31}W$ ~ -IΩΩ'
 - Powers nebula; large energy reservoir
 - Deceleration due to Maxwell stress applied to surface
 - Equivalently Lorentz force as current crossed B in star
 - Fate of EM energy and angular momentum flux?

3 viii 2011

Flaring behavior

Singular events or power spectrum? No variation seen in other bands Rapid flux variability <1h

3 viii 2011

Spectrum of "Flare"

Equations of Motion

0.011 photons emitted in turning through aberration angle γ^{-1}

$$\frac{d\vec{u}}{dt} = \vec{a}_L - \frac{2r_e}{3c}\gamma^2 a_{L\perp}^2 \hat{\vec{u}}, \quad \frac{d\vec{x}}{dt} = \hat{\vec{u}} \qquad \vec{a}_L = \frac{e}{m} \left(\frac{\vec{E}}{c} + \hat{\vec{u}} \times \vec{B}\right)$$
$$a_{L\perp}(\vec{x}, \hat{\vec{u}}) = \frac{e}{m} B_e = \frac{e}{m} \left[B_{\perp}^2 + \left(\frac{E_{\perp}}{c}\right)^2 - 2\frac{\vec{E} \times \vec{B}_{\cdot} \hat{\vec{u}}}{c}\right]^{1/2}$$

 $\gamma_9{}^2B_{e-7}=(E_{peak}/23MeV)$ Radiation reaction dominates when $E_{\gamma} > \alpha^{-1}m_ec^2$ If only uniform magnetic field, electron cools in 12° If add electric field, E>5cB to avoid energy loss If as likely, E>B, not just relativistic beaming $_{3 \text{ viii } 2011}$

Where does the variation originate ?

SLAC SSI

- Long term variation of nebula likely due to changes in magnetic field
- Peak power is ~ 3 percent of nebular power
- Flare energy equals that stared in a region of size
 L~ 20B₋₇^{1/2} It d ~ 2B₋₇^{1/2} arcsec
- We want to learn where and how nature accelerates particles to high energy
- Not the Pulsar
 - No correlation with rotation frequency
- Wind shocks when momentum flux equals nebular pressure
- Wind, Shock, Jet, Torus are all possibilities

1 lt hr = 3 mas Larmor radius= $60\gamma_9 B_{-7}^{-1} mas$

3 viii 2011

Reconnection

•Oppositely-directed field lines "change partners" through resistive region containing electric field

•High energy particles can be accelerated in field where curvature is low

- •Hard to radiate GeV photons, however
- •Hard to make efficient in equatorial current sheet

Pinch?

- Resistance in line current
 - Current carried by PeV pairs
 - Resistance due to radiation reaction
 - Pairs undergo poloidal gyrations which radiate in all directions
 - Relativistic drift along direction of current
 - Compose current from orbits selfconsistently
 - Illustration of Poynting's theorem!
 - Variation due to instability of pinch
 - Like a "slinky"
 - Observed in other nebulae

Ultra High Energy Cosmic Rays

Zevatrons?

- Top down exotica
 - GZK cutoff
 - EM channel not seen and hard to avoid
- Massive BH in AGN (~30-50 Mpc)
 - AGN may be too weak
 - Acceleration must be remote from BH
- Gamma-Ray Bursts
 - Stellar BH or millisecond magnetar?
 - Too distant? Too much radiation?
- Cluster Shocks (Norman, Ryu, Bohringer...)
 - High Mach accretion shocks
 - Hard to accelerate p to ZeV energy
 - Heavy elements may be predicted
 - e.g. Fe; range ~ 10 Mpc?
 - Composition controversial
 - Analysis should be aided by LHC

3 viii 2011

Shocks in Structure Formation Simulations (Ryu et al 2003)

(100 Mpc/*h*)² 2D slice

Simulations exhibit high M shocks

LCDM simulation with 1024³ cells, computational box: $(100h^{-1} \text{ Mpc})^3$, TVD: grid-based Eulerian hydro code

- Entropy Matters $S_{gas}=1.5 \ln[(T/T_{rec})(n/n_{rec})^{-2/3}]k$ (relative to recombination)
 - Much more in CMB
- Shocks create gas entropy • $\Box \Delta S[M] = 1.5 \ln[(5M^2/4 - 1/4)(1/4 + 3/4M^2)^{5/3}]k$
- Before reionization
 - Weak shocks M ~ 1-3
 - $\Box \Delta S < k$
- During reionization (z~10)
 - **Ionization entropy**
 - Moderate shocks M ~1-20
 - $\Box \Delta S < 3k$
- After reionization
 - May need ΔS as large as 10k —
 - Would imply M~100
 - e.g. V~1000, s~10 km s⁻¹

Recent strong evidence for presence of high M accretion shocks around clusters

 cm^{2})

(keV

Summary

- Fermi is a great success
- Supernova shocks accelerate protons and electrons to >100 TeV AND create 100nT field
- Pulsar Wind Nebulae accelerate are efficient accelerators and create ~10PeV electrons?
- Accretion shocks surrounding clusters are good candidates to accelerate ~1 ZeV Fe nuclei

– Are they Fe (or lower z nuclei)?

 Higher energy astrophysics provides impressive illustrations of high energy physics