Optical afterglow of GRB 050709

Hubble image 5.6 days after initial gamma-ray burst (Credit: Derek Fox / Penn State University)

Sources of Gravitational Waves

Peter Shawhan

SLAC Summer Institute — August 2, 2011

LIGO-G1100861

General Relativity with Nearly Flat Spacetime

Start with the Einstein field equations:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$
The spacetime metric where $G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$

Consider a small perturbation from the flat (Minkowski) metric $\eta_{\mu\nu}$:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

To linear order, get a wave equation for $h_{\mu\nu}$.

In transverse-traceless gauge, assuming wave is traveling in +z direction, solutions have the form

$$h_{\mu\nu} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} e^{i\omega\left(\frac{z}{c}-t\right)}$$

Once produced, gravitational waves:

- Travel away from the source at the speed of light
- Change the effective distance between inertial points i.e. the spacetime metric — transverse to the direction of travel

Looking at a fixed place in space while time moves forward, the waves alternately stretch and shrink the space

Two massive, compact objects in a tight orbit deform space (and any object in it) with a frequency which is twice the orbital frequency The stretching is described by a

dimensionless strain, $h(t) = \Delta L(t)/L$ (here, h_+ since this is plus polarization) h(t) is inversely proportional to the distance from the source

Plus and cross polarizations are transverse tensor modes

Any system with a time-varying mass quadrupole moment will couple to those modes

Or a time-varying mass *current* quadrupole

Higher multipoles too – but no monopole or dipole emission in GR

Gravitational radiation is a unique messenger

- Emission is only weakly anisotropic
- Not scattered or attenuated by matter
- Carries information about the core engine of astrophysical events
- Details of waveform reflect the fundamental theory of gravity
- May accompany detectable EM / particle radiation, or may not

However, GWs have not been directly detected yet ...

Long-term radio observations of the Hulse-Taylor binary pulsar B1913+16 have yielded neutron star masses (1.44 and 1.39 M_{\odot}) and orbital parameters

System shows very gradual orbital decay – just as general relativity predicts! ⇒ Very strong indirect evidence for gravitational radiation

Gravitational waves carry away energy and angular momentum

Orbit will continue to decay (inspiral) over the next ~300 million years, until...

The neutron stars will merge !

And possibly collapse to form a black hole

Final few minutes will be in audio frequency band

Gravitational wave detectors can listen for signals like these

Time evolution of GW amplitude and frequency depend on the masses, spins and orbit orientation of the binary system

Compact objects: white dwarfs, neutron stars, black holes

First-order effect: "chirp rate" when not too close to merger

Characteristic time scale: $\tau \propto \frac{(m_1+m_2)^{1/3}}{m_1m_2}$

So higher mass \rightarrow chirps more quickly

Inspiral ends at innermost stable circular orbit (ISCO)

Depends on masses and spins; $f_{\rm ISCO} \propto \frac{1}{(m_1 + m_2)}$

So higher mass \rightarrow signal cuts off at a lower frequency

Relative amplitude and phase of polarization components (h_+ , h_\times) indicate the orientation of the orbit

Orbital phase vs. time \rightarrow orbital phase vs. frequency during chirp "Post-Newtonian expansion" if spins are negligible:

$$\Psi(f) = 2\pi f t_c + \frac{3}{128\eta} (\pi m f)^{-5/3}$$
Newtonian
$$+ \frac{5}{96\eta} \left(\frac{743}{336} + \frac{11}{4} \eta \right) (\pi m f)^{-1}$$

$$- \frac{3\pi}{8\eta} (\pi m f)^{-2/3}$$

$$+ \frac{15}{64\eta} \left(\frac{3058673}{1016064} + \frac{5429}{1008} \eta + \frac{617}{144} \eta^2 \right) (\pi m f)^{-1/3}$$

$$PR$$

$$PR$$

where
$$m = (m_1 + m_2)$$
, $\eta = \frac{m_1 m_2}{m^2}$

So phase evolution near merger gives individual masses

Into the Merger

Merger dynamics are driven by strong-field gravity

Post-Newtonian expansion loses accuracy

Neutron star tidal deformation can affect final part of inspiral

Black hole spins can cause orbital plane to precess and strongly influence final "plunge"

Numerical relativity to the rescue !

GW observations can determine merger rate, masses, spins, host galaxy types, position in or near host galaxies for the population(s) of compact binaries

Key question: How did supermassive black holes grow ?

Gas accretion VS.

NASA/CXC/SAO

i me

History of Binary Mergers in the Universe

VS.

Key question: How were the *first* black holes formed ?

Population III stars

Visualization: Ralf Kaehler (ZIB) & Tom Abel (Penn State); Simulation: Tom Abel (Penn State), Greg Bryan (Oxford) & Mike Norman (UCSD)

Star mass > ~ 300 M_{\odot} \rightarrow Black hole mass > ~ 100 M_{\odot}

Direct collapse of gas clouds

Mayer et al. Nature 466, 1082 (2010)

Black hole mass $\approx 10^3 - 10^5 M_{\odot}$ or even more ("massive seeds")

vs. runaway collapse of dense stellar clusters, vs. dark stars...

GR predicts the *absolute* luminosity of a binary inspiral+merger → detection of a signal measures the luminosity distance directly

"Standard siren" – neutron star binaries out to z~1, BH binaries anywhere Precision depends on SNR, ability to disentangle orbit orientation

GW signal alone does not determine redshift *

GW signal is redshifted, but that looks just like a change in masses

* Neutron stars could in principle break this degeneracy

Identifying an optical counterpart provides redshift

Host galaxy redshift can be measured Knowing exact sky position of the source helps analysis

With a sample of events, can trace out distance-redshift relation

e.g. measure cosmological *w* parameter to within a few percent One systematic: weak lensing

Relic of past collapse of a moderately massive star

Remnant spin from progenitor, or from having been spun up by accretion

Generally magnetized, sometimes very strongly

A small fraction of neutron stars are seen as **pulsars**

From side:

If not axisymmetric, will emit gravitational waves

Example: ellipsoid with distinct transverse axes

Along spin axis:

→ Continuous GW signal

Can integrate over months to detect a weak signal

Modulated by source & detector motion

Some searches have to handle very large parameter space technically challenging

asey Reed/PSI

Key question: How asymmetric are the neutron stars out there?

Depends on maximum ellipticity / bumpiness the star can support

Equation of state, and other properties of neutron star material Asymmetry may be supported by magnetic fields Or by thermal anisotropy from accretion

But might not actually explore that maximum – Depends on the formation and cooling of the neutron star

Initial asymmetry could get frozen in

Accreted material could produce permanent asymmetry

Lots of theoretical activity, no clear picture yet

Core-Collapse Supernovae (type lb/c and type II)

- X-ray
- Gamma ray

- Low-energy
 - High-energy

- gravitational
- · Depends on mass flows

Reviews: Ott CQG 26, 063001 (2009), Fryer & New Living Reviews in Relativity 2011-1

Collapse and bounce Shape & strength depend on rotation, s11A3O13 equation of state of nuclear matter () **Rotational instabilities** e.g. *r*-modes Convection -5 Standing accretion shock instability (SASI) Proto-neutron star oscillations -10 10(g-modes) Dimmelmeier et al., PRD 78, 064056 Anisotropic outflows (2008)Black hole formation Fallback onto black hole

20

Core Collapse Supernova Modeling

Is very challenging !

Trying to infer mechanism that drives the explosion

Lots of astrophysics

Relativistic flows MHD Rotation, buoyancy Equation of state Neutrino transport

2D simulations may miss some effects; 3D more computationally demanding

Example simulations:

Murphy, Ott & Burrows, ApJ 707, 1173 (2009)

What Waveforms Can We Expect?

Mechanism	Waveform	Polarization
Collapse and bounce	spike	linear
Rotational instabilities	quasiperiodic	circular
Convection	broadband	mixed
SASI	broadband	mixed
Proto-neutron star g-modes	quasiperiodic	linear
Anisotropic matter outflow or neutrino emission	slow growth with memory	linear
Black hole formation	QNM ringing	lin/circ
Fallback onto black hole	driven QNMs	"

→ Detecting (or not detecting) a GW signal can tell us what is driving supernova explosions

Milky Way rate ~1 per 30–100 years

Expect one core-collapse SN within 5 Mpc every 2–5 years

Relatively weak GW emssion expected in most modeled mechanisms – probably limited to Milky Way and nearby galaxies (similar to neutrino detectors)

What if GR is Wrong?

Alternative theories of gravity permit additional modes

besides the tensor modes of GR

e.g. scalar-tensor theories

Brans-Dicke is one

Actual coupling depends on the specific theory

Could allow core-collapse supernova to be detected from farther away?

21

Random signal from sum of unresolved sources

From the early universe, or from astrophysical sources since then

Usual assumptions about the signal:

Stationary

Gaussian

Unpolarized

Power-law frequency dependence, probably (e.g. f^{-3})

May be isotropic, or not

Looks basically like extra noise in each detector !

To detect stochastic signal, cross-correlate data from different detectors

Isotropic Stochastic Models and Limits

LSC+Virgo, Nature **460**, 990 (2009)

Wide range of possible frequencies

Can probe some models of the early history of the universe

Stochastic GWs from Astrophysical Sources

Stochastic GWs from Astrophysical Sources

The Gravitational Wave Signal Tableau

	Short duration			Long duration	
Waveform known	Cosmic string cusp / kink	g NS / BH ringdown	Low-mass inspiral	Asymmetric spinning NS	
	High-mass inspiral		E Iow-	Binary tracked by frequency detector	
	tation-driven				
		i	instability	Cosmological stochastic	
Waveform unknown	Stellar core	e collapse		background	
	???	???	???	Many overlapping signals	