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1.  Introduction

Over the course of the past ten days, you’ve heard a lot 
about the frontiers of our knowledge of cosmological 

history:
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and the microphysical participants that help us to 
understand it:

The fact that the two subjects go hand-in-hand is no 
longer surprising to us; it has been clear at least since the 
renaissance of the 1970s that particle physics has a lot to 

teach us about cosmology, and vice versa.
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One will teach us about physics at the weak scale, and the 
other about the inflationary cosmology which preceeded 

the big bang (reheating).

It is of course quite clear that lessons coming from 
cosmological distance scales have significant impact on our 

thinking about short distance physics, and vice versa. 
Friday, May 21, 2010

I am going to spend the bulk of my talk describing my, likely 
highly idiosyncratic, view of where some of the major 

questions that will drive theoretical paradigm shifts in the 
future now lie.  This will drive me to distances and energies 
that lie beyond (perhaps, well beyond) the scales visible in 

the Ouroboros above.

Thursday, August 4, 2011



My basic organisation will orbit around three areas of basic 
ignorance in our current understanding, so I will really be 

summarizing our ignorance of the Universe:

1.  We do not understand how our Universe originated 
(where are we coming from?).

2.  We do not understand how to describe our Universe 
today, theoretically (where are we?).

3.  We do not understand what will happen to our Universe 
in the deep future (where are we going?).

I will discuss, broadly speaking, the (theoretical) problems 
and opportunities in each area.  But I will start with 2, and 

work forwards (and backwards) to 3 (and 1).
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II.  Where are we today?

Since the discovery of the Hubble expansion, it has been 
useful to model our Universe in terms of FLRW metrics:

II.  General analysis of FLRW equations

So, let’s start at the beginning.  The Einstein equations 
applied to an FLRW cosmology yield:

This is reasonable because it would appear to “bounce” 
to any macroscopic observer; and yet since the minimal 
size can be GUT length >> Planck length, we can remain 

in the regime of validity of general relativity.
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We explore simple but novel bouncing solutions of general relativity. These solutions require
curvature k = +1, and are supported by a negative cosmological term and matter with −1 < w <
−1/3. In the case of moderate bounces (where the ratio of the maximal scale factor a+ to the
minimal scale factor a− is O(1)), the solutions are shown to be classically stable and cycle through
an infinite set of bounces. For more extreme cases with very large a+/a−, we show that the solutions
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to a departure from the realm of validity of semiclassical general relativity, likely yielding a singular
crunch.

PACS numbers:

Two questions which have recurred again and again
in theoretical cosmology, starting with [1, 2], are: 1) is
the Universe eternal, or did it have a beginning at some
definite time in the past?, and 2) is it possible to make
Universes which enjoy one or more “bounces” where the
scale factor first crunches, and then bangs?[15]

The answers to these two questions are deeply inter-
twined with the subject matter of the singularity theo-
rems of Penrose and Hawking (discussed comprehensively
in [5]). These theorems show that, given an energy con-
dition of the form

Tµνvµvν ≥ 0 (1)

for a suitable class of vectors vµ, where Tµν is the stress-
energy tensor of the sources supporting the Universe, one
can prove that the Universe must be geodesically incom-
plete (“singular”).

It is instructive to discuss which energy conditions need
to be assumed to prove existence of a cosmological sin-
gularity for the FLRW cosmologies

ds2 = −dt2+a(t)2(
dr2

1− kr2
+r2(dθ2+sin2(θ)dφ2)) . (2)

For k = −1, 0 the only condition that must be assumed
is the null energy condition (NEC), i.e. eqn. (1) where vµ

is a future-pointing null vector field. The NEC is reason-
able; it is in agreement with everything we know about
macroscopic matter and energy sources in our Universe.
(Interesting cosmological scenarios which attain a smooth
bounce by violating the NEC can be found in [6]).

For k = +1, however, one must instead assume the
strong energy condition (SEC). We know, essentially for
certain, that this condition is violated by macroscopic
sources in our world, as well as in many completely con-
sistent theoretical toy models. The goal of this paper
is to explore the two questions above for k = +1 Uni-
verses with sources satisfying the NEC but violating the
SEC. We will find that one can make classical cosmolo-
gies that live eternally, undergoing an infinite sequence

of non-singular bounces, and remain within the regime
of validity of general relativity. These cosmologies are
stable to small perturbations. In these cases, the ra-
tio between maximal and minimal scale factors is not
too large. In the opposite regime where the maximal
and minimal sizes differ by orders of magnitude, we’ll in-
stead find clear indications of both classical and quantum
pathologies; classically there are growing modes (which
can be tuned away), and quantum mechanically, particle
production backreacts significantly after some number of
cycles, likely causing a singular crunch. [16]

One further comment about motivations seems appro-
priate here. A conservative view, supported by current
data and the very successful theory of inflation [10], is
that our current ΛCDM cosmology was preceeded by a
phase of slow-roll inflation, with eternal inflation likely
occurring on even larger cosmic scales. One motivation
for our exploration of the possibility of eternal cosmolo-
gies is the striking result of [11], that eternal inflation
cannot be past eternal. Even in scenarios involving eter-
nal inflation, eventually, we need to come to terms with
the problem of the initial singularity.

Solutions.– The FRW equations for the metric eqn. (2)
are

ȧ2

a2
=

8π

3
Gρ− k

a2
(3)

ä

a
= −4π

3
G (ρ + 3p) (4)

where ρ is the energy density and p is the pressure. We
want oscillatory solutions, namely those with two ex-
trema (ȧ = 0) such that at the smaller (where we’ll call
the value of the scale factor a−) ä > 0, and at the larger
(which we’ll denote by a+) ä < 0. It is easy to see that
these requirements, along with the NEC, only allow so-
lutions for a when there is positive curvature, k = +1.
The minimal model which oscillates has three compo-
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The great discovery of the 1990s, which you heard a lot 
about yesterday (and throughout), is that currently the 

expansion of the Universe is accelerating:
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The most reasonable explanation is that we basically live in 
de Sitter space, the maximally symmetric solution of 

Einstein’s equations with positive cosmological constant.

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2)

This immediately raises two questions.  We have convincing 
answers for neither.

A.  How does one formulate a theory of gravity in de Sitter 
space?

B.  What explains the existence and magnitude of the 
Hubble constant governing accelerated expansion?
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Let us discuss these issues in turn.

A.    How does one formulate gravity in de Sitter space?

This may sound like a confusing question at first.  After all, 
we know that the correct theory of gravity for all practical 

purposes is Einstein’s general theory of relativity:

Einstein’s equation comes from a well-defined variational 
problem, so can’t we just do standard Lagrangian field 

theory with it?
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The difficulties with this are well known.  Some are deeper 
than others.

Minor problem:  The theory is non-renormalizable.  It has 
poor behavior in high-energy scattering.

Deeper issue:  There is very strong evidence that 
gravitational theories are fundamentally not like local 

Lagrangian field theories.

Because gravity becomes stronger for very massive or 
energetic particles, in fact gravitational scattering 

probabilities grow as a power of the energy:

Pgravitational scattering,i ∼ GNE2

As a result,  when one reaches energies comparable to the 
Planck mass (15 orders of magnitude higher than the 

highest currently accessible energies in particle 
accelerators), probability conservation would naively be 

violated.

This is the first puzzle associated with quantum gravity.  
We will see the same problem re-emerge in a totally 

different, and simpler, way in this talk.
Wednesday, July 28, 2010
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The evidence for the second, more startling problem grew 
out of classic studies of black holes in the 1970s (carried 

out by numerous relativists).

The simplest solution of Einstein’s theory of relativity is the 
Schwarzschild black hole:

The simplest non-trivial solution of Einstein’s theory, 
discovered by Karl Schwarzschild in 1916, describes the 
curved space-time outside of a spherically symmetric, 

massive body known as a black hole:

Something funny happens here at r=2GM : there is an event 
horizon.  
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Studies of black holes by Bekenstein, Hawking and others in 
the 1970s, yielded some striking analogies between these 

strange objects and more familiar physical systems.

For instance, a charged, rotating black hole was found to be 
governed by the  “equation of state” :

dM = κdA + ΩdJ + ΦdQ

“surface gravity” of the black hole

Other theorems showed that:

*  The horizon area A of a black hole increases or stays 
constant, but never decreases, as a function of time.

Wednesday, July 28, 2010
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* The surface gravity is constant over the event horizon

 This suggests an analogy.  The laws of thermodynamics 
discuss a quantity called the  “entropy”  which increases 

monotonically with time (here illustrated by a typical dorm 
room configuration).

Wednesday, July 28, 2010

Now, recall the thermodynamic identity:
And there is a relation between energy E and entropy S in 

thermodynamics, which states that:

dE = TdS + ...

All of this strongly hints that, at least at the level of formal 
analogy, we should equate:

Mass of black hole   =    Energy

Area of event horizon    =    Entropy

Surface gravity   =     Temperature
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The discovery of Hawking radiation in 1974 gave strong 
evidence that this analogy should be taken seriously.

In a stunning development in 1974, Hawking actually proved 
that quantum mechanically, the classical structure of the 
horizon is modified to allow radiation, consistent with 

interpreting the black hole as a thermal system at 
temperature T.

Wednesday, July 28, 2010

But the fact that the entropy scales like the area of the 
horizon, and isn’t extensive in the volume, is confusing.
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Here is a puzzle which should have bothered some of you 
already.  Due to the Jeans instability, the generic fate of a 

distribution of matter is to collapse into a large black hole:

For matter in a volume V, the resulting event horizon will 
have area less than or equal to the area of the surface 

bounding the volume V.

Wednesday, July 28, 2010

After all, the generic fate of a distribution of matter, due to 
the Jeans instability, is to eventually collapse into a big black 

hole:

 For matter in a volume V, the resulting event horizon will 
have area less than the area of the surface bounding V.
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In standard thermodynamics, entropy is extensive, because 
you can excite local bits of stuff at each point in space.  

These results suggest that gravity theories are not like this.

In fact, it was proposed (somewhat vaguely) by ‘t Hooft and 
Susskind, that in any theory of gravity, one can 

“holographically” formulate the physics on a surface of co-
dimension one in the larger space-time.

This statement has been made more precise, with 
overwhelming evidence in some cases, in the framework of 

string theory.
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The poster-child for successful implementation of 
holography is anti-de Sitter space.   This is the evil twin of 
de Sitter space; it is the maximally symmetric solution of 

gravity with a negative cosmological constant.  It is easy to 
get AdS spaces (in less than ten dimensions) out of string 

theory constructions.

* The metric of 4d AdS space is given by:

ds2 = −r2dt2 + dr2

r2 + r2(dx2 + dy2) .

* This metric has a manifest scaling symmetry:

(t, x, y)→ λ(t, x, y), r → r
λ
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A pictorial representation of the scale invariance:

Escher
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* In fact, deeper investigation will reveal that the metric 
enjoys the full symmetries of the so-called “conformal 

group” SO(3,2).  (This can be made manifest by writing AdS 
space as a hyperboloid in the 5d flat space with signature 

(3,2)).

* An amusing connection: this is the same symmetry that 
characterises field theories at fixed points of the 

renormalisation group!

dλi
dt = βi(λ)

βi(λ = λ∗) = 0

These are called  “conformal field theories.”
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This is not a coincidence.

There are infinite classes of string constructions of AdS 
solutions, for which a precise “dual” conformal field theory 

is known.  

* The energy scale in the dual field theory is geometrized in 
the AdS metric by the extra coordinate r; a d-dimensional 

field theory is dual to d+1 dimensional AdS gravity.

* This is a precise realization of holography!  A higher-
dimensional gravity theory is completely equivalent to a 
non-gravitational theory (with extensive entropy) one 

dimension down.

Maldacena
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Globally,   AdS looks like a can, where photons can reach 
the edge in finite time.

Relativists would say such a space is  “not globally 
hyperbolic”; in addition to initial conditions, one must 

specify boundary data at the edge of the can.  This is the 
data which specifies the field theory Lagrangian
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One can obtain flat space as a subtle limit of AdS, and the 
flat-space S-matrix as a suitable limit of correlation 

functions in the dual quantum field theory.

This gives us a precise formulation of quantum gravity in 
(asymptotically) AdS spaces, and flat space as a limit.

In holography, de Sitter space is still the odd man out!  
Research on dS holography is a fascinating and confusing 

subject of intense current interest:

Now, finally, let me get to problem A:  how to formulate 
gravity in de Sitter space.  We have just discussed our great 
success with AdS, and by a natural limit, Minkowski space.
But we seemingly live in something more like dS.  Do we 

get hints about how to make sense of this theory?
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* The space-time does not have a natural spatial infinity like 
the boundary of the can in AdS; there are only past and 

future infinities in time. 

* Even these aren’t robust; generic initial data in the far past 
causes a crunch before reaching future infinity!

* The causal structure is confusing.  There are cosmological 
horizons which separate different observers; should we 
even be able to formulate a global theory of quantum 

gravity in dS space?

* In the context of a larger framework like string theory, 
it seems likely that dS solutions are only metastable at best.
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Many leading researchers today would agree that it is at 
least plausible, and maybe highly likely, that de Sitter 

quantum gravity is simply not a well-defined theory in and 
of itself.  This is in stark contrast with our current view of 

AdS and Minkowski gravity.

So, it is very interesting, to say the least, that we find 
ourselves (approximately) inhabiting the de Sitter 

version of a maximally symmetric space-time!

Thursday, August 4, 2011



B.  Can we understand the dark energy?

I don’t think modified gravity theories or quintessence add 
anything to the mix; I will assume we are trying to explain 

the value of a hard cosmological constant.
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Is there any sense in which today’s value, of 
roughly             , is natural?          10−120M4

PL

* As ‘t Hooft taught us, small dimensionless ratios of scales 
can be  “natural” if a symmetry is restored when the ratio 

is precisely zero.

* The only known symmetry that can forbid a vacuum 
energy is the combination of supersymmetry and an 

unbroken global R-symmetry.

* This is completely unrealistic.  (Next time someone tells 
you the only problem is that the vacuum energy isn’t 
zero, while zero would have been natural, you should 

SMACK THEM).
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Instead, the existence of a variety of scales in Nature:

elements, of the fields; later we will discuss corrections to this. It is nec-

essary here that the coefficient of the dominant term in the action is made

dimensionless, as in the example (5), by rescaling of the fields. This is used

in the estimate (7), where it is implicitly assumed that the only dimensionful

quantity is the energy scale.

For more general applications, it is useful to state things in a way that

does not depend on dimensional analysis. Again assume that the kinetic

term (5) is dominant. Imagine scaling all energies and momenta by a factor

s < 1, so lengths and times scale by 1/s. The volume element and derivatives

in the kinetic term scale as s2−D, so the fluctuations of φ scale as s−1+D/2 and

the i’th interaction then scales as sδi−D, thus reproducing the earlier conclu-

sion about relevance and irrelevance. In some contexts there are two ‘kinetic

terms.’ For example, there can be both first derivative Chern-Simons and

second derivative Maxwell terms present in 2 + 1 dimensional gauge theory,

but at any given momentum one will dominate the other and determine the

scaling. Similarly in statistical mechanics of membranes, there can be both

second derivative tension and fourth derivative rigidity terms.

There are many comments and elaborations to make, but let us first list

some classic examples:

High Energy Theory E0 Low Energy Theory
1. Weinberg-Salam MW ∼ 80 GeV Fermi weak interaction theory

2. grand unified theory MGUT ∼ 1016 GeV SU(3) × SU(2) × U(1)
3. QCD Mρ ∼ .8 GeV current algebra

4. lattice field theory – continuum field theory

5. string theory Mstring ∼ 1018 GeV field theory of gravity and matter

In the first two examples, both the high and low energy theories are per-

turbative field theories. Notice in the first example that there is no relevant

or marginal weak interaction in the low energy theory. The largest irrelevant

term is dimension 6, suppressed by two powers of E0, but of course it still

has observable effects: ‘irrelevant’ is not to be taken in precisely its collo-

4

gives rich opportunities to generate contributions to the 
vacuum energy at all scales (both through radiative 

corrections, and through free energies generated in phase 
transitions).

So, how are we to understand the presence of a small but 
non-zero vacuum energy?  

Thursday, August 4, 2011



An alternative which has been discussed very extensively, 
and on which I’ll just spend a brief moment now, is to 
postulate that in fact the vacuum energy  “scans”  over 
many values in a large set of vacua.  Such a set of vacua 

seems to be realised in string theory (where the 
parameters involve the size and shape of the extra 

dimensions this theory requires):

Thursday, August 4, 2011



A rough understanding of where the large vacuum 
degeneracy comes from is easy to attain.  Maximal 

symmetry of our observed four dimensions does not 
constrain what goes on in the “extra” 6 dimensions of 

string compactifications.  And generically, they are threaded 
by analogues of magnetic flux (both due to consistency 
conditions, and to help stabilize them to some preferred 

shape and avoid unwanted massless shape moduli):
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If we imagine there are K “cycles” in the manifold that can 
be threaded by flux, and each can be threaded by say 

anywhere from 1-10 units, we would end up with 

Nchoices ∼ 10K

In examples we can analyze, there is a stable vacuum for a 
large fraction of these possible flux choices.  This gives rise 

to a large vacuum degeneracy.

If we follow Weinberg’s old idea that the distribution of 
cosmological constants should be flat around zero, and 
require that galaxy formation should be possible, we’d 

conclude that the observed value of the vacuum energy is 
typical.  If this is the correct explanation, it furthers the 

Copernican revolution one more step.  

Ktypical ∼ 100s
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3.  Where are we going?

I’ve now built up enough ingredients that I can explain 
some of the most  “radically conservative” ideas about 

what our future holds.

In any picture like that suggested by current incarnations of 
string theory, it seems likely that we inhabit one of many 

possible vacua.  Lets imagine there were just two:
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In quantum mechanics, e.g. of alpha decay, we know 
following Gamow that tunneling can occur through a 

potential barrier:

The same is true for vacua in quantum field theory.  As 
demonstrated elegantly by Coleman, the fate of a false 

vacuum (after, usually, an exponentially long period of time) 
is to suffer from nucleation of bubbles of  “truer” vacuum:
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On the other hand, a false vacuum with positive vacuum 
energy is exponentially expanding.  

So while bubbles of truer vacua can nucleate and expand 
inside of it, generically, the volume of space in false vacuum 

can continue to grow as well!

The result (the “Lindeverse”) is a complicated, eternally 
inflating set of nested bubbles, each in principle 
containing distinct laws of low-energy physics.
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Can one ever test this idea?

If one is very lucky, perhaps yes:

First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year
Results

Stephen M. Feeney,1, ∗ Matthew C. Johnson,2, 3, † Daniel J. Mortlock,4, ‡ and Hiranya V. Peiris1, 5, §

1Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

3California Institute of Technology, Pasadena, CA 91125, USA
4Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, U.K.

5Institute of Astronomy and Kavli Institute for Cosmology,
University of Cambridge, Cambridge CB3 0HA, U.K.

(Dated: July 13, 2011)

In the picture of eternal inflation, our observable universe resides inside a single bubble nucleated
from an inflating false vacuum. Many of the theories giving rise to eternal inflation predict that we
have causal access to collisions with other bubble universes, providing an opportunity to confront
these theories with observation. We present the results from the first observational search for the
effects of bubble collisions, using cosmic microwave background data from the WMAP satellite.
Our search targets a generic set of properties associated with a bubble collision spacetime, which we
describe in detail. We use a modular algorithm that is designed to avoid a posteriori selection effects,
automatically picking out the most promising signals, performing a search for causal boundaries,
and conducting a full Bayesian parameter estimation and model selection analysis. We outline each
component of this algorithm, describing its response to simulated CMB skies with and without
bubble collisions. Comparing the results for simulated bubble collisions to the results from an
analysis of the WMAP 7-year data, we rule out bubble collisions over a range of parameter space.
Our model selection results based on WMAP 7-year data do not warrant augmenting ΛCDM with
bubble collisions. Data from the Planck satellite can be used to more definitively test the bubble
collision hypothesis.
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Imprints of collisions of  “other bubbles” with our own, 
could conceivably be hidden in the CMB.

But even if these ideas are right, it seems a priori highly 
unlikely that such signatures would be there; slow-roll
inflation hides them, and bubble nucleation times are 
typically so large as to lead to well-separated bubbles.
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In any case, if such a picture is true, our long term fate is 
pretty clear:

We are going to decay (perhaps to a ten-dimensional non-
compact situation, perhaps to something less striking).

Since these ideas may seem pretty outlandish (and who 
among you is confident that string theory is right 

anyhow?), I would like to emphasize one thing:
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This picture of the large-scale structure of space-time does 
not depend on string theory.  It depends on only three 

assumptions:

1.  The correct microphysical theory has multiple vacua 
(true of all high-energy theories I’ve encountered).

2.  Quantum tunneling between distinct vacua is allowed.

3.  Positive vacuum energy (present in some of these vacua) 
causes exponentially quick expansion.

Therefore, I believe this picture is radically conservative in 
the sense of Wheeler.  It takes simple ideas to their logical 
extreme; if it is wrong, one of these simple ideas must fall.
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4.  Origins
This talk will not be about that kind of Universe.  I will 

instead focus on two conceptual questions.

i) We all know that the  “singularity theorems”  of Penrose 
and Hawking, guarantee that the Universe began with a 

singularity.

This is not quite true.
Thursday, July 28, 2011

I will disagree with this momentarily, but let me first 
discuss how it fits in with my previous claims.
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A natural thought is that if the Universe is undergoing  
“eternal inflation,” perhaps there is no singularity?  Perhaps 

it has always been inflating, with bubbles nucleating here 
and there?

Nice thought, but it ain’t so:
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Inflationary spacetimes are not past-complete
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1Institute of Cosmology, Department of Physics and Astronomy
Tufts University, Medford, MA 02155, USA.
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Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of
singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition,
that a cosmological model which is inflating – or just expanding sufficiently fast – must be incomplete
in null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble
parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics
other than inflation to describe the past boundary of the inflating region of spacetime.

PACS numbers: 98.80.Cq, 04.20.Dw

I. Introduction. Inflationary cosmological models [1, 2, 3]
are generically eternal to the future [4, 5]. In these mod-
els, the Universe consists of post-inflationary, thermal-
ized regions coexisting with still-inflating ones. In co-
moving coordinates the thermalized regions grow in time
and are joined by new thermalized regions, so the comov-
ing volume of the inflating regions vanishes as t → ∞.
Nonetheless, the inflating regions expand so fast that
their physical volume grows exponentially with time. As
a result, there is never a time when the Universe is com-
pletely thermalized. In such spacetimes, it is natural
to ask if the Universe could also be past-eternal. If it
could, eternal inflation would provide a viable model of
the Universe with no initial singularity. The Universe
would never come into existence. It would simply exist.

This possibility was discussed in the early days of in-
flation, but it was soon realized [6, 7] that the idea could
not be implemented in the simplest model in which the
inflating universe is described by an exact de Sitter space.
More general theorems showing that inflationary space-
times are geodesically incomplete to the past were then
proved [8]. One of the key assumptions made in these
theorems is that the energy-momentum tensor obeys the
weak energy condition. Although this condition is satis-
fied by all known forms of classical matter, subsequent
work has shown that it is likely to be violated by quan-
tum effects in inflationary models [9, 10]. Such viola-
tions must occur whenever quantum fluctuations result
in an increase of the Hubble parameter H — i.e., when
dH/dt > 0 — provided that the spacetime and the fluc-
tuation can be approximated as locally flat. Such upward
fluctuations in H are essential for the future-eternal na-
ture of chaotic inflation. Thus, the weak energy condi-
tion is generally violated in an eternally inflating uni-
verse. These violations appear to open the door again to
the possibility that inflation, by itself, can eliminate the
need for an initial singularity. Here we argue that this is
not the case. In fact, we show that the general situation

is very similar to that in de Sitter space.
The intuitive reason why de Sitter inflation cannot be

past-eternal is that, in the full de Sitter space, expo-
nential expansion is preceded by exponential contraction.
Such a contracting phase is not part of standard inflation-
ary models, and does not appear to be consistent with
the physics of inflation. If thermalized regions were able
to form all the way to past infinity in the contracting
spacetime, the whole universe would have been thermal-
ized before inflationary expansion could begin. In our
analysis we will exclude the possibility of such a con-
tracting phase by considering spacetimes for which the
past region obeys an averaged expansion condition, by
which we mean that the average expansion rate in the
past is greater than zero:

Hav > 0. (1)

With a suitable definition of H and the region over which
the average is to be taken, we will show that the averaged
expansion condition implies past-incompleteness.

It is important to realize that the terms expansion and
contraction refer to the behavior of congruences of time-
like geodesics (the potential trajectories of test particles).
It is meaningless to say that a spacetime is expanding at
a single point, since in the vicinity of any point one can
always construct congruences that expand or contract at
any desired rate. We will see, however, that nontrivial
consequences can result if we assume the existence of a
single congruence with a positive average expansion rate
throughout some specified region.

While the past of an inflationary model is a matter of
speculation, the attractor nature of the inflationary equa-
tions implies that many properties of the future can be
deduced unambiguously. According to the standard pic-
ture of inflation, all physical quantities are slowly vary-
ing on the scale of H−1. In the vicinity of any point P
in the inflating region, we can choose an approximately
homogenous, isotropic and flat spacelike surface which
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Like all of the singularity theorems, their theorem shows 
under certain assumptions that the space-time is past 

geodesically incomplete.

This does NOT necessarily mean that there is a curvature 
singularity.  But it does mean that there exist  “observers”

who could reach, in finite affine time, a region where space-
time has an  “edge.”  There, a priori unknown boundary 
conditions would be required to give a complete theory.

This is not so satisfactory.  But I would like to point out 
now that the power of the singularity theorems has been 
greatly overstated, and there are many issues there still to 

investigate as we try to unravel our distant past.
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Consider, for simplicity, the FLRW cosmologies:Consider, for simplicity, the FLRW cosmologies:

To prove the singularity theorems, one is required to 
assume an energy condition.  That is, one is required to 

assume that:

for some class of vectors v.  Now, for the Universes with 
negative or vanishing curvature, k=-1 or 0, one can get by 
with the “Null energy condition” -- v is just required to 
be a future-pointing null vector field.  This condition is in 
agreement with everything we know about macroscopic 

sources our Universe.

Tµνvµvν ≥ 0

A Simple Harmonic Universe

Peter W. Graham,1 Bart Horn,1 Shamit Kachru,1, 2 Surjeet Rajendran,1 and Gonzalo Torroba1, 2

1Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305
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We explore simple but novel bouncing solutions of general relativity. These solutions require
curvature k = +1, and are supported by a negative cosmological term and matter with −1 < w <
−1/3. In the case of moderate bounces (where the ratio of the maximal scale factor a+ to the
minimal scale factor a− is O(1)), the solutions are shown to be classically stable and cycle through
an infinite set of bounces. For more extreme cases with very large a+/a−, we show that the solutions
can still cycle through many bounces before classical instabilities take them out of the regime of
validity of our approximations. In this regime, quantum particle production also leads eventually
to a departure from the realm of validity of semiclassical general relativity, likely yielding a singular
crunch.

PACS numbers:

Two questions which have recurred again and again
in theoretical cosmology, starting with [1, 2], are: 1) is
the Universe eternal, or did it have a beginning at some
definite time in the past?, and 2) is it possible to make
Universes which enjoy one or more “bounces” where the
scale factor first crunches, and then bangs?[15]

The answers to these two questions are deeply inter-
twined with the subject matter of the singularity theo-
rems of Penrose and Hawking (discussed comprehensively
in [5]). These theorems show that, given an energy con-
dition of the form

Tµνvµvν ≥ 0 (1)

for a suitable class of vectors vµ, where Tµν is the stress-
energy tensor of the sources supporting the Universe, one
can prove that the Universe must be geodesically incom-
plete (“singular”).

It is instructive to discuss which energy conditions need
to be assumed to prove existence of a cosmological sin-
gularity for the FLRW cosmologies

ds2 = −dt2+a(t)2(
dr2

1− kr2
+r2(dθ2+sin2(θ)dφ2)) . (2)

For k = −1, 0 the only condition that must be assumed
is the null energy condition (NEC), i.e. eqn. (1) where vµ

is a future-pointing null vector field. The NEC is reason-
able; it is in agreement with everything we know about
macroscopic matter and energy sources in our Universe.
(Interesting cosmological scenarios which attain a smooth
bounce by violating the NEC can be found in [6]).

For k = +1, however, one must instead assume the
strong energy condition (SEC). We know, essentially for
certain, that this condition is violated by macroscopic
sources in our world, as well as in many completely con-
sistent theoretical toy models. The goal of this paper
is to explore the two questions above for k = +1 Uni-
verses with sources satisfying the NEC but violating the
SEC. We will find that one can make classical cosmolo-
gies that live eternally, undergoing an infinite sequence

of non-singular bounces, and remain within the regime
of validity of general relativity. These cosmologies are
stable to small perturbations. In these cases, the ra-
tio between maximal and minimal scale factors is not
too large. In the opposite regime where the maximal
and minimal sizes differ by orders of magnitude, we’ll in-
stead find clear indications of both classical and quantum
pathologies; classically there are growing modes (which
can be tuned away), and quantum mechanically, particle
production backreacts significantly after some number of
cycles, likely causing a singular crunch. [16]

One further comment about motivations seems appro-
priate here. A conservative view, supported by current
data and the very successful theory of inflation [10], is
that our current ΛCDM cosmology was preceeded by a
phase of slow-roll inflation, with eternal inflation likely
occurring on even larger cosmic scales. One motivation
for our exploration of the possibility of eternal cosmolo-
gies is the striking result of [11], that eternal inflation
cannot be past eternal. Even in scenarios involving eter-
nal inflation, eventually, we need to come to terms with
the problem of the initial singularity.

Solutions.– The FRW equations for the metric eqn. (2)
are

ȧ2

a2
=

8π

3
Gρ− k

a2
(3)

ä

a
= −4π

3
G (ρ + 3p) (4)

where ρ is the energy density and p is the pressure. We
want oscillatory solutions, namely those with two ex-
trema (ȧ = 0) such that at the smaller (where we’ll call
the value of the scale factor a−) ä > 0, and at the larger
(which we’ll denote by a+) ä < 0. It is easy to see that
these requirements, along with the NEC, only allow so-
lutions for a when there is positive curvature, k = +1.
The minimal model which oscillates has three compo-

But c.f. Creminelli, Luty,
Nicolis, Senatore;...
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(which we’ll denote by a+) ä < 0. It is easy to see that
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for some class of vector fields v.

Now for Universes with k=-1 or 0, one is just required to 
assume the “Null energy condition” - that is, v above 

should be any future-pointing null vector field.
This condition is in agreement with everything we know 

about macroscopic sources in our Universe.
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In terms of equations of state for perfect fluids, for 
instance, this boils down to the condition:

p = wρ

w ≥ −1

No problem.

For k=+1, things are a bit more confusing.  The singularity 
theorems require one to assume the so-called  “strong-

energy condition.”  In terms of w, this is basically requiring 
that w should satisfy              .                      

We know, essentially for sure, that the strong energy 
condition is violated in our Universe, and by many 

reasonable toy physical models as well.

w ≥ −1
3

Thursday, July 28, 2011
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This means that as of today, we have no singularity theorem 
that gives strong evidence for a breakdown of general 

relativity in our distant past.   In fact, one can investigate 
two inter-related questions:

i) Can one build singularity-free, eternal cosmologies?

ii) Can one build cosmologies that go through one or more 
cycles of  “big bangs” and  “crunches,” where the scale 

factor varies between a large maximal and small minimal 
size (but stays within the regime of control of GR)?

For observational reasons I believe in any realistic context 
such solutions would need to be matched onto inflation; 

but I think these are interesting and foundational questions.

Thursday, August 4, 2011



We’ve been exploring these issues with several 
collaborators at SLAC & Stanford (Graham, Horn, 

Rajendran, and Torroba).

We find that one can make very simple classical oscillating 
solutions of general relativity, which enjoy an infinite 

number of crunches and bangs, using just a cosmological 
constant and one matter source obeying all reasonable 

energy conditions.

* If the ratio of maximal to minimal scale factor is very 
large, we find that there are classical instabilities; one can 

(and must) tune to obtain a large number of cycles.

* For mild ratios of maximal to minimal size, there seem to 
be completely stable classical oscillating eternal 

cosmologies.
Thursday, August 4, 2011



The simplest such solution arises for a matter source
with w=-2/3, which is attained in certain topological defect 

model, for instance.  The equations boil down to those 
governing a simple harmonic oscillator:

III.  A Simple Harmonic Universe

While the qualitative features of the solutions are not dis-
similar for all w in the allowed range for bouncing 

cosmologies, for w=-2/3 (c.f. networks of domain walls) the 
solutions are particularly simple.

II. A simple harmonic universe (SHU)

When w = −2/3 the FRW eqs. describe a harmonic oscillator:

ä +
|Λ|
3

a =
4π
3

GNc

⇒ a(t) =
1

√
γω

(
1 +

√
1 − γ cos(ωt)

)

ω ≡
√

|Λ|
3

, γ ≡ 3|Λ|
(4πGNc)2

Focus on the interesting limit

γ % 1 ⇒ a−
a+

≈ γ
Thursday, July 28, 2011

The parameter gamma roughly controls the ratio between 
the minimal and maximal value of the scale factor.

The simplest classical metric perturbations with various 
momenta behave as follows:
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√
Instead of periodic b.c., we want to give initial conditions for χ

√
Set of decoupled harmonic oscillators in each cycle

√
Patch sols across ‘barriers’ and ’wells’ of the potential

! The homogeneous mode exhibits linear growth,

φ(η) ∼ η

γ2

! For intermediate momenta k < 1/√γ,

φ(η) ∼ exp

[√

1 − k2

k2
c
η

]
, k2

c ∼ 1/γ

! At high momenta, modulated Minkowski modes,

φ(η) ∼ (sin η) eikη

Thursday, July 28, 2011

* They obey an equation that can be recast as a Klein-
Gordon equation for a scalar field:

φ′′ + 2a′

a φ′ + k(k + 2)φ = 0
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Instantiating plots:

10 20 30 40 50 60

Η

"4

"2

2

4

Φ

10 20 30 40 50 60

Η

"2000

"1500

"1000

"500

500

1000

1500

Φ

3

behavior. It is important to distinguish Universes with
γ ∼ O(1) from this with γ " 1; we shall always describe
the behavior in both limits.
•There is the l = 0 homogeneous mode. Intuitively, we
expect that shifting such a mode may be analogous to
shifting the homogeneous mode of the scale factor, which
would simply move us in the space of periodic solutions
and lead to a linear growth of the perturbation in naive
perturbation theory (since e.g. two sinusoidal functions
with slightly different frequency will perturbatively grow
apart at a linear rate, as they get out of phase). This is
borne out by the numerics for both γ " 1 and γ ∼ 1.
•There are momentum modes with 0 < l << 1√

γ on the
S3. These modes have long enough wavelength to de-
tect the difference between our cosmology and Minkowski
space. For γ ∼ 1, i.e. a Universe which is “quivering”
around a mean size, we find that they have oscillatory
behavior and do not represent instabilities. In contrast,
for γ " 1, they can be dangerous; we shall discuss the
bounds we can derive from their behavior momentarily.
•There are momentum modes with l >> 1√

γ on the S3.
These modes have small enough wavelength that they
should barely detect the departures of our metric from
flat space; they are expected to behave more or less like
typical Minkowski space scalar field modes. This is borne
out for both γ " 1 and γ ∼ 1.

To summarize, the Universes with γ ∼ 1 are classically
stable and live forever. The Universes with γ " 1 suffer
from exponential growth of the finite momentum modes
with l << 1√

γ as a function of cycle number. We show
the numerical analysis of the modes in the Figure below,
for all three regimes of momenta, and various values of
γ. The exponential growth whose beginning is shown in
the middle picture would not be present for γ ∼ 1.

As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−

√
1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)
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As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−

√
1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)

Linear growth of 
homogeneous mode

γ ∼ 1 γ ! 1

Oscillatory high-
momentum modes
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For mild values of gamma, no instabilities!  (The 
homogeneous growing mode just represents the way two 
sinusoidal functions with slightly different frequencies grow 

apart in perturbation theory).
Thursday, August 4, 2011



I believe that one might, however, be able to prove a 
quantum singularity theorem that eliminates many such 

possibilities.   Intuitive argument:

* Any such cosmology contains, among other things, gravity. 

* Time-dependence of the scale-factor will lead to graviton 
production.

*Once sufficiently many gravitons are present, the averaged 
stress-energy tensor will satisfy the strong energy 

condition, enabling one to prove a theorem from the 
Raychaudhuri equations.
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In any case, it is clear from the fact that there is still active 
debate over how to past-complete eternal inflation; 

whether our Universe began at a finite time in the past or 
has been eternally present; and whether there may have 
even been earlier contracting phases in our Universe’s 

evolution; that our cosmological origins remain shrouded in 
mist.

So I guess my summary of at least our knowledge of the 
Universe, would have to be: we don’t yet know where we 
came from, we don’t understand where we are, and we 

have only disturbing speculations about where we’re going.  

Thanks for your attention!
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