Marc Delrieux, CERN, BE/OP/PS

CERN’S PROTON SYNCHROTRON COMPLEX OPERATION TEAMS AND DIAGNOSTICS APPLICATIONS

- CERN’s Proton Synchrotron (PS) complex
- How are we involved?
- Review of some diagnostics applications
 - examples of 3 possible scenarios for operations

Diagnostics
07/08/2012

Workshop on Accelerator Operations
SLAC National Accelerator Laboratory
CERN’s Proton Synchrotron complex (1/4)
CERN’s PS complex (2/4)

- Linac 2, 1978-?
 - Protons source
 - Radio-frequency quadrupole
 - 2 buncher cavities (and 1 debuncher)
 - 3 Alvarez drift tubes tanks
 - Bringing **protons** to a kinetic energy of **50 MeV**, with a beam current up to **180 mA**, each **1.2 s**
PS booster, 1972-?

- **4 superimposed synchrotrons** of 157 m circumference, injecting a certain quantity of Linac 2’s pulses via a *multi-turns injection* process
- Captures 0, 1 or 2 bunches per ring, hence providing up to **8 bunches** to the PS each **1.2 s**, with a kinetic energy of **1.4 GeV**
- Wide intensity spread: **5E09-4E13** protons per cycle
- A dedicated experimental area (ISOLDE), which consumes almost **40%** of produced cycles (and a huge quantity of protons!)
- **Space charge** effects, tune shift
- Critical for **intensity** and **transverse** beam characteristics (hence LHC luminosity)
Proton Synchrotron, 1959-?
- Has accelerated/decelerated
 - Protons/antiprotons
 - Ions
 - Electrons/positrons
- **Combined-function** magnets
- Very versatile Radio-Frequency system
 - accelerating cavities (3.3-10 MHz)
 - “gymnastics” cavities (20, 40, 80, 200 MHz).
- Wide harmonics range (h7 to h420), **numerous manipulations**
 - bunch splitting, bunch merging, batch compression, batch expansion, bunch rotation...
- Various **extraction energies** (up to 26 GeV)
- All operational beams cross **transition** (Transition energy 6.1 GeV).
- **Fast**, **slow**, and **multi-turn** extractions (5 turns continuous transfer...)
- Critical for **longitudinal** beams characteristics.
- Dedicated **experimental areas** (East Hall, nTOF), and other **client machine** (Antiproton Decelerator)

The ions LHC injectors chain also involves Linac3 and LEIR (Low Energy Ion Ring) but these are not operated by PS teams.
How are we involved in applications?

- Since 1959, some of our applications have slightly evolved...
- **Groups** developing applications
 - Controls
 - Beam instrumentation
 - Operation
- Each shift leader is **linkman** for a certain topic
 - Analogue signals observation
 - Beam intensity measurements
 - Longitudinal profile measurements
 - Beam losses measurements
 - Orbit measurements and corrections
 - Transverse profile measurements
 - Working point
 - Magnetic cycles
 - ...and also: Controls system, power converters and magnets, beam documentation, Frequency domain measurements, Timing and sequencing, safety...
- A linkman's **tasks**: write specifications, test applications, report issues, follow-up, train fellow operators, ensure the applications fulfill expectations
- A **tool** for follow-up: from our e-logbook, “report OP issues”
1st (most frequent) scenario: let them do the job

- PS orbit (Beam Instrumentation)
 - 40 pick-ups, up to 200,000 measurements
 - Trajectories (turn-by-turn, bunch-by-bunch), orbits, mean radial position, phase space reconstruction
 - OP input permanently necessary
 - Succession of harmonics for gates
 - Very good reaction and follow-up

- Analog signals
 - >1800 signals
 - OP functionalities
 - Memory, survey...
 - Multi-triggering and analysis
 - Piquet service
1st (most frequent) scenario: let them do the job

- Controls system
 - Knobs and working sets
 - Analog functions editor
- OP requirements
- Piquet service

- Equipment groups
 - PS main power supply
 - Specialists application and interface
 but adapted following OP requirements
1st (most frequent) scenario: let them do the job

- **Fixed displays**
 - **OP requirements** to help fast diagnostics
 - Intensities, magnetic cycles, destinations, particles types...

- **Alarms**
 - Adapt an *already existing* program to PS complex
 - Integrate **commands**
 - Integrate **frontends** monitoring
2nd scenario: adapt application to your needs

- In general CERN-(too)-generic applications
 - LHC is so different from our \textbf{small pulsed} accelerators!
 - Development for LHC is the priority
 - So many different beams = so many different settings
 - \textbf{Exotic processes} and manipulations

- Wire scanners, tune and chromaticity measurements...
3rd scenario: do it yourself

- Specific, dedicated applications
 - RF gymnastics
 - Bunch shape measurements
 - Working point control
 - Combined-functions magnets
 - additional windings
 - low-energy quadrupoles
 - Pulsed accelerators
 - Samplers

- Requires heavy maintenance
 - In any case, you have to use controls tools and follow their standards
Conclusions

- If you have a dedicated controls/applications group
 - Try to get involved as early as possible
 - Write specifications
 - Find compromises
 - Make sure developers do what YOU want
 - Ask a piquet service for applications YOU consider critical
 - Make sure you have efficient issues reporting tools

- If some operators are able to code (and no one gets offended)
 - Either adapt existing applications to your needs
 - Or do 100% of the work…but OP can’t provide the same infrastructure as a dedicated group

- Thank you for your attention, and...how do you get what you want?