Performance of a thick silicon γ-ray polarimeter

S.O. Nelson, W. N. Johnson, R. A. Kroeger, J. D. Kurfess,
E. I. Novikova, B. F. Phlips, E. A. Wulf
Naval Research Laboratory

X-ray Polarimetry Workshop
SLAC, Stanford, CA
February 10, 2004
Introduction

- Silicon double-sided strip detectors (DSSDs) are the basis of many designs for Compton telescopes.
- Silicon DSSDs are being considered for an Advanced Compton Telescope (ACT).
- Also under consideration for a large effective area X-ray timing mission.
- NRL has developed thicker (2 mm) intrinsic silicon detectors.
- Highly-segmented Si detectors make good polarimeters:
 - Low-Z active target and detector are one and the same
 - Good energy resolution without cooling
 - Imaging
 - Compton polarimetry
- Each layer acts as an in-plane polarimeter.
- Each pair of layers also acts as a polarimeter.
SINTEF Detector

- 2 mm thick planar silicon DSSD.
- 64 x 64 strips, with 0.891 mm pitch
- DC-coupled to external components (50 MΩ, 800 pF).
- Room temperature leakage currents ~1.2 μA @800V.
- 3 mm guard ring structure with 23 floating rings.
Experimental Setup

- eV5093 preamps, 64 per board.
- 16 channel NIM shapers (CAEN N568-B)
- VME ADCs (CAEN V785)
- Total of 296 channels of spectroscopy
- ASIC readout under development
Experimental Setup

- 1 mCi 57Co unpolarized source (122 keV) in Pb collimator
- Scattering target generates polarized γ-rays by Compton scattering
- Trigger on ground side strips (y-strips, denotes x-position of hits)
- Hardware coincidence between target and 1 or more bottom detectors
- Threshold for single channels = 12 keV
- Cooling to 0º C can reduce FWHM to 2 keV
- FWHM of composite events = 6 keV
Cuts on collected events

Beam generation cuts:
\[70^\circ < \theta < 110^\circ \]
\[-20^\circ < \phi < 20^\circ \]
\[20\text{ mm} < r \]

Detector cuts:
- Matching energies in x and y strips (<2*fwhm).
- Energy thresholds (12 keV).
- Total energy (changes ordering).
GEANT4 simulations

- GEANT4 simulations with polarization (no Doppler broadening).
- Simulated data recorded under “trigger” conditions to simulate the lab trigger coincidence.
- Simulated data reduced to format identical to that obtained in the lab (a list of strip hits and energies per event).
- Simulated data run through nearly identical analysis code for comparison to experimental data.
Experimental and simulated data

- Plot relative position of second hit with respect to first hit in polarimeter.
- Central cross is Nearest Neighbor exclusion (charge sharing events).
Modulation ratios

\[R = \frac{N_{\theta+90} - N_{\theta}}{N_{\theta+90} + N_{\theta}} \]

Events with 2 hits in 1 strip need special treatment
2-Layer Polarimeter

Forward scattering from top layer into bottom layer.
Back scattering from bottom layer.
Combination of inter-layer scattering plots.

- More statistics in the forward scattering plot, as expected.
- Efficiency increases with layer number N nearly as N (N-1).
- Longer lever-arm for scattering angle (less attenuation).
- X-Y pairs unambiguous.
2-Layer scattering in plane

- Different r-cut between layers due to geometry (16 strips above, 20 below).
- In a space instrument, all layers would be equivalent.
- Statistics increase with more layers and/or a calorimeter.
- Data rate scales roughly as layer number.
Modulation ratios for 2-layer instrument

- High polarization ratio.
- Short lever arm.
- High geometric efficiency for thick detectors (strip pitch < thickness).
- Data more difficult to process.

- Lower polarization ratio.
- Longer lever arm.
- Efficiency rises as $\sim N^2$.
- Data simpler to process.
Conclusions

• Highly-segmented silicon detectors make excellent polarimeters.
• Source-testing with the current lab setup allows for simple characterization of the polarimeter.
• Triggering should be done on both sides of a DSSD to avoid systematic errors.
• Need to resolve discrepancy between data and simulations
• The efficiency of such an instrument increases dramatically with the number of detectors: more area, more layers, and the thickness of the layers (i.e. kilograms of active silicon).
• A real instrument could consist of 16 layers, with each layer having 4 detectors. Each detector would be 10 cm x 10 cm x 0.2 cm.

 The effective area of such a polarimeter would be \(\sim 80 \text{ cm}^2 \) at 100 keV
 \(\sim 20 \text{ cm}^2 \) at 1 MeV